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Abstract

The properties of the drug may be altered by the combination, which may cause unexpected drug–drug interactions (DDIs). Prediction
of DDIs provides combination strategies of drugs for systematic and effective treatment. In most of deep learning-based methods
for predicting DDI, encoded information about the drugs is insufficient in some extent, which limits the performances of DDIs
prediction. In this work, we propose a novel attention-mechanism-based multidimensional feature encoder for DDIs prediction,
namely attention-based multidimensional feature encoder (AMDE). Specifically, in AMDE, we encode drug features from multiple
dimensions, including information from both Simplified Molecular-Input Line-Entry System sequence and atomic graph of the drug.
Data experiments are conducted on DDI data set selected from Drugbank, involving a total of 34 282 DDI relationships with 17 141
positive DDI samples and 17 141 negative samples. Experimental results show that our AMDE performs better than some state-of-
the-art baseline methods, including Random Forest, One-Dimension Convolutional Neural Networks, DeepDrug, Long Short-Term
Memory, Seq2seq, Deepconv, DeepDDI, Graph Attention Networks and Knowledge Graph Neural Networks. In practice, we select a set
of 150 drugs with 3723 DDIs, which are never appeared in training, validation and test sets. AMDE performs well in DDIs prediction
task, with AUROC and AUPRC 0.981 and 0.975. As well, we use Torasemide (DB00214) as an example and predict the most likely drug
to interact with it. The top 15 scores all have been reported with clear interactions in literatures.

Keywords: DDI prediction, multidimensional feature, encoder, deep learning

Introduction
It is known that most human diseases are caused by com-
plex biological processes, which cannot be completely
cured by any single drug. It needs to take multiple drugs
at the same time for combination therapy. This treatment
increases the possibility of drug–drug interactions (DDIs)
and even adverse drug reactions [1–3]. Serious drug inter-
actions may make the drug lose its therapeutic effect and
may also lead to drug withdrawal [2]. Whether from the
perspective of therapeutic benefit or economic benefit,
it is very important to identify potential DDIs as soon
as possible. However, the task faces many challenges.
Although the clinical experiment is reliable, it has high
cost, long cycle and low economic benefit [3–7].

With the development of artificial intelligence,
machine learning methods can overcome the limitations
of clinical experiment [8], so as to help scientists identify
DDIs quickly and effectively [4].

Related works
Plenty of computational methods have been developed
to identify DDIs. And the task of Identifying DDIs can
be modeled as a binary classification task in [9–16]. The
existing work focuses on two subtasks: encoding drug
features and predicting interactions. Accurate prediction
of DDIs depends on effective feature coding technology
strongly [10–12]. Different feature coding technologies
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may have different extent of deviations. In general, these
technologies can be divided into three categories: chemi-
cal fingerprint-based, molecular graph-based and knowl-
edge graph-based.

Traditional DDIs prediction models mostly use chem-
ical fingerprint as input [9–14]. Chemical fingerprint is
sequence data, which can be easily input into machine
learning models. Chemical fingerprint can describe spe-
cific property of drug, such as substructure, related tar-
gets and side effects. One fingerprint cannot show all
properties, so the methods based on chemical fingerprint
often integrate multiple chemical fingerprints to predict
DDIs [17–20]. These methods focus on extracting the
features of sequence data. Natural language processing
(NLP) methods can be used to process these fingerprint
data, for example word2vec [17] and seq2seq [18].

Drugs are known as chemical molecules with spatial
structure. No matter how many fingerprints are inte-
grated, the sequence cannot show the spatial structure
of drugs. Some important fingerprints are applicable to a
small number of drugs, which limits the size of the data
set. This kind of method has limited ability to encode
the spatial structure of drugs and thus lack of scala-
bility. Some other widely used methods to encode drug
features are relying on molecular graph structure [19–
23]. The input of the model is graph or data that can be
converted into graph. In this way, adjacency matrix and
feature matrix are used to represent the graph of drugs.
The basic idea is to extract atomic information as drug
features where atomic information is updated iteratively
through Graph Neural Network (GNN). These methods
can effectively encode the atomic information of drugs
spatially.

In some GNNs, attention mechanism is added to
enhance interpretability [20]. The physicochemical
properties of drugs are generally manifested in specific
substructures that are smaller than original drug.
Encoding atomic features may destroy the chemical
information represented by the substructure and also
lose information about the chemical bonds connecting
the atoms.

It is also popular to incorporate knowledge from mul-
tiple domains related to the drug-like protein targets
and genes instead of solely focusing on domain-specific
knowledge [24, 25]. It models the DDI prediction as a
link prediction task. Firstly, a heterogeneous graph is
constructed based on the relationships of drugs, pro-
teins and genes. And then, the association of drugs in
the heterogeneous graph is encoded as drug features.
These models focus on the neighborhood relationships of
the drug but ignore the drug’s own structure. Although
information in related domains is very useful for DDIs
prediction, it is also very expensive to obtain [24, 26–29].

The physicochemical properties of drugs are complex
in which single encoding of drug features from one-
dimensional (1D) sequence or two-dimensional (2D)
graphical structure cannot adequately represent the

drug. Inadequate feature encoding can further eliminate
the effectiveness of the DDIs prediction task.

In this work, we propose an attention-based multidi-
mensional feature encoder (AMDE) to predict DDIs, con-
sidering the urgency of the DDIs prediction problems and
the limitations of existing models. In a nutshell, we use
Simplified Molecular-Input Line-Entry System (SMILES)
string as input, which is a line notation that uses a
predefined set of rules to describe the structure of com-
pounds, which is sequential. Our model consists of three
main modules. The first module is a 2D graph feature
encoder, which transforms SMILES into atomic graph
and uses Message Passing Attention Network (MPAN)
[30] to extract both high-order structures and seman-
tic relations of the graph. The representation of atomic
graph is natural and rational because drugs are princi-
pally graph-structured with atoms as nodes and bonds
as edges. The second module is a 1D sequence feature
encoder, which splits SMILES into smaller length sub-
structures and encodes the sequence features of drugs
by Transformer [31]. This module can encode sequential
relationships between substructures. The last module is
a multidimensional feature decoder for predicting DDIs
after hybridizing 2D and 1D features of drugs. Compared
with previous studies, our contributions are summarized
as follows:

(i) The attention-based multidimensional feature
encoder is able to process the SMILES string of
drugs from multiple dimensions. It encodes features
that can represent the information of drugs more
precisely.

(ii) The multidimensional feature decoder further
compresses the drug feature vector and is able to
strongly associate features with prediction results.

(iii) It is provided a new method of feature fusion: inte-
grating drug features from multiple dimensions can
enhance the effectiveness of downstream prediction
tasks.

Model architecture
We formulate the DDIs prediction as a binary classifi-
cation task to determine whether pairs of drugs would
interact with each other. In our method, drugs are rep-
resented by a SMILES sequence, which consists of a
sequence of chemical atoms and chemical bonds. The
drug set is denoted as D = {d1. · · · , .dn}; DDI predicted task
can be modeled as a mapping function

� : dx × dy
�→ P̂ ∈ {0, 1} . (1)

AMDE consists of two channels to extract both 2D
graph features and 1D sequence features from the drug
SMILES string simultaneously. The structure of the model
is shown in Figure 1.
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Figure 1. Structure of AMDE.

In Figure 1, the attention-based multidimensional
feature encoder (AMDE) input is drug SMILES sequence.
AMDE is divided into two channels to process the
SMILES strings separately. The RDKit converts SMILES
into atomic graph as input for the graph encoder. The
graph encoder generates a 2D atomic graph feature
vector of the drug through an MPAN. We use Frequent
Consecutive Subsequence (FCS) Algorithm that encodes
the SMILES directly to generate sequence data as input
for the sequence encoder. The sequence encoder uses
the Transformer to encode the sequence data directly
to generate a feature vector that represents the 1D
sequence of the drug. The 2D atomic graph feature
vector and the 1D sequence feature vector are fed into
multidimensional decoder. A higher dimensional vector
is generated by feature hybrid part; then, a decoder is
implemented on this vector to get a final token indicating
whether DDI will occur.

Feature extraction
As shown in Figure 1, we use 2018.09.1.0-RDKit [32] to
convert SMILES into undirected graph G = {V, E}. By sym-
bol V, we denote the set of nodes and E is the set of edges.
We consider the atoms as nodes and the bonds connect-
ing the atoms as edges. We use the adjacency matrix
A ∈ Rn×n, the atomic feature matrix N ∈ Rn×l and the bond
feature matrixB ∈ Rm×k to represent the graph structure
of a drug (ndenotes the number of atoms, mdenotes the

number of edges and l and k are the dimension of the fea-
ture). This representation can better present the internal
structure information of the drug [33].

We also apply a data-driven sequential pattern mining
algorithm called FCS Algorithm [34]. This algorithm is
able to progressively decompose the ID sequence SMILES
string of drugs into smaller subsequences and individual
atom symbols. When traditional fingerprints based on
substructure are used to represent drugs, the length of
drug fingerprint (representing the number of substruc-
tures) is commonly over 100. Some of these substruc-
tures are still a subset of other substructures. Therefore,
it is difficult to know which substructure leads to the
outcome. FCS breaks the drug SMILES strings down into
medium-sized substructures that are easier to give clear
indication [34]. For a drugdi, FCS results in an explicit
substructure sequence:

FCS
(
di

) = Si = {
s1, s2 . . . sp|sk ∈ W

}
, (2)

where W is the FCS vocabulary; Sidenotes the FSC-
encoded subsequences of di.

Graph feature encoder: MPAN
Message Passing Neural Network (MPNN) [35] is a kind
of generalized GNN. MPNN is very suitable for extracting
features of graph structured data. In recent years, MPNN
has been used to solve molecular property prediction
problems [30, 36–38]. We use MPAN, which is with the
attention block added in MPNN, as a feature encoder for
atomic graph in the DDIs prediction task [30].

The input of this module is 2D atomic graph G =
{V, E}. Specifically, Vis the set of nodes, containing the
various atoms in the molecule V = {C, H, O . . . . . . }. Eis
the set of edges, which contains a total of four types.
E = {ev,w ∈ type|v, w ∈ V}, type = {single, double, triple,
aromatic bond.}.

Graph feature encoder is performed through the fol-
lowing two phases:

Phase1: Message passing. Nodes pass their own infor-
mation in form of message vectors to other neighbor
nodes along the edges of the graph, while nodes update
the hidden features of itself by aggregating the message
vectors passed from its neighbors. After K times message
passing, each node receives message vectors from its
Kth neighbors and the hidden features of each node are
updated K times.

Phase2: Readout. After the hidden features of all nodes
are updated, we use a readout function to aggregate the
features of all nodes into the representation of the whole
graph.

Message passing

As shown in Figure 2, each node initializes a fixed-
size feature h(0)

v ∈ Rr, which contains the chemical
information of the atom itself [39] (such as atom type,
valency, number of implicit H, number of electrons, type
of hybridization and number of aromatic rings). Inputting
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Figure 2. Message passing progress. (A) Computation on one node, the one marked by the red circle as an example has an initial feature of h0
v. (B)

Computation on graph. Message passing occurs at each atom, and each node is processed independently.

h(0)
v into a Convolutional Neural Network (CNN) [40]

generates a node message vector

message(0)
v = CNN

(
h(0)

v

)
. (3)

The hidden features of nodes are updated iteratively
along the edges of the graph by passing information
between neighbor nodes. Thus, we define the aggre-
gated message vector m(k)

v calculation step operated
locally as

m(k)
v = Aggregation

(
message(k)

w , ev,w|w ∈ N(v), ev,w ∈ E
)

,

(4)
where Aggregation denotes a message aggregating func-
tion, N(v) denotes a self-included neighborhood of the
node v and ev,w denotes the edge between v node and
node w.

Notably, the message vector generated by the sender
node is passed to the neighbor nodes by a specific type
of edge. The receiving node aggregates messages from
its neighbors, including information about the neighbor
nodes and edges between the nodes. Then, each node
updates the hidden features using its current hidden
features h(k)

v and the message from its neighbors m(k)
v . This

is completed according to following formulas:

h(k+1)
v = Update

(
h(k)

v , m(k)
v

)
. (5)

When node updates its hidden features, we should
focus on those neighbor nodes that provide critical infor-
mation. Consequently, an attention block is added to this
module. We calculate attention scores of neighbor nodes
as weight coefficients in aggregating the neighboring

message vectors. We define more precisely below

m(k)
v = At

(
message(k)

w , h(k)
w evw |w ∈ N(v)

)
(6)

Ak

(
message(k)

w , h(k)
w evw

)

=
∑

w∈N(v)

message(k)
w �

exp
(
f (evw)

NN

(
h(k)

w

))
∑

w′∈N(v) exp

(
f

(
evw′

)
NN

(
h(k)

w′
)) , (7)

where fNN is a feed forward neural network and � denotes
the Hadamard product. We use Gate Recurrent Unit
(GRU) [41] as update function. GRU is the best update
function in original MPAN [30]. We compare the perfor-
mance of the model with different update functions. We
show the result in Supplementary Table 1, see Supple-
mentary Data available online at http://bib.oxfordjournal
s.org/

h(k+1)
v = GRU

(
h(k)

v , m(k)
v

)
. (8)

After K times of message passing, hidden features
of each node contain the messages of its Kth neighbor
nodes.

Readout

We use the residual idea to connect the hidden
featureh(K)

v with the initial feature h(0)
v as the new node

feature. The purpose of using residual model is to
propagate the input signal directly from the lower layer
to the higher layer during the forward propagation,
which adds more information to the output and thus
enhances the robustness of the model. Then, the features
of all nodes are aggregated into the representation of
graph. Since each atom has different contributions to
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the physicochemical properties of the drug, we calculate
the attention score as the weight coefficient of the atom.
The formula for this part is as following:

T(di)
mpan = Readout

(
h(K)

v , h(0)
v |v ∈ Gi

)
(9)

Readout
(
h(K)

v , h(0)
v

)

=
∑
v∈G

pNN

((
h(K)

v , h(0)
v

))
�

exp
(
gNN

((
h(K)

v , h(0)
v

)))
∑

w′∈G exp
(
gNN

((
h(K)

w′ , h(0)

w′
))) , (10)

[[DmEquation10]]where pNN and gNN are feed forward
neural network, � denotes Hadamard product and (,)
denotes connecting operation.

We use MPAN on each SMILES string to generate

the feature vector T
(di)
mpan, which contains information

on both atoms, chemical bonds and graph structure
of the drug. Compared with the traditional Graph
Convolutional Network (GCN), MPAN pays attention
to both neighbor nodes and connected edges between
nodes when updating node features. Therefore, the
features generated by MPAN can adequately represent
the 2D structural information of drugs.

As shown in Figure 2, at each time step, each node
shares information with its neighbors and updates its
hidden features. As the time step increases, the hidden
features of node hk

v capture a broader view of its local
constraint environment, which is represented by gray
atoms. And after K times message passing, the hidden
features of each atom are updated K times and we get an
atomic feature matrix N ∈ Rn×r.

Sequence feature encoder: transformer
Transformer, proposed in [31], relies on attention mecha-
nism to calculate contextual features, which is obviously
different from Recurrent Neural Network (RNN) [42] and
CNN [40]. Transformer is suitable for encoding sequen-
tial information and it is widely used in NLP. Multi-
head attention mechanism enables Transformer to learn
the features of different subsequences in the sequence.
Transformer is capable of linking different positions of a
sequence to obtain an embedding containing contextual
information when processing sequence information.

We input the FCS-encoded sequence into Transformer

to generate a feature vector T
(di)
transformer, which contains

1D sequence structure information.

Si = FCS
(
di

)
(11)

T(di)
transformer = Transformer (Si) . (12)

Multidimensional feature decoder
This module contains two parts: first is feature hybrid
part, where we hybridize the features obtained from
the 2D graph feature encoder and the 1D sequence fea-
ture encoder. We apply two hybrid methods, sum and

concatenation, which are two traditional feature hybrid
methods that have been widely used in previous studies
[20, 22, 24, 27]. Previous studies have shown that the use
of these two hybrid methods helps the model achieve
its goal. We obtain two different matrices represent-
ing drug features from Graph encoder and Sequence
encoder, respectively. We have two methods to com-
bine the features, by summing or concatenating the two
matrixes.

For the ith drug, denoted by di, T
(di)
mpan and T

(di)
transformer are

two features obtained from the 2D graph feature encoder
and the 1D sequence feature encoder. We can sum and
concatenate the feature matrixes through the following
formulas (13) and (14):

sum
(

T(di)
mpan, T(di)

transformer

)
= T(di)

mpan + T(di)
transformer (13)

concat
(

T(di)
mpan, T(di)

transformer

)
, =

(
T(di)

mpan, T(di)
transformer

)
(14)

where ‘+’ denotes vector addition and (,) denotes con-
necting operation.

In predicting interactions, the multidimensional fea-
tures of two drugs are fed into a decoder, which even-
tually outputs a final token indicating DDIs P̂ ∈ 0 or 1.
We use a decoder consisting of a three-layer feedforward
neural network capable of establishing a strong associa-
tion between input features and output results.

The loss function
In order to establish a DDIs prediction model, we
construct a two-channel multidimensional drug feature
encoder. MPAN is applied to 2D graph feature encoder,
and Transformer is applied to 1D sequence feature
encoder. Multidimensional feature decoder decodes all
embedding vectors from the embedding space. The
output of the decoder is a result P̂ ∈ 0, 1, where 1 indicates
that a DDI is predicted to present and 0 indicates that
there is no DDI predicted. Our model is optimized using
a cross-entropy loss function, where Prepresents the true
label

Loss = −
∑

P log P̂ − λ (1 − P) log
(
1 − P̂

)
. (15)

Backpropagation spread from the output layer to each
previous layer. We train the model with all trainable
parameters by this end-to-end approach. The results
show that end-to-end training can greatly improve the
performance of the model, since all trainable param-
eters accept the gradient of the loss function. In this
study, loss is propagated through two-channel multidi-
mensional drug feature encoder and multidimensional
feature decoder.
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Data experiments
Data set and setup
Data set

The DDIs data are obtained from the Drugbank [43]. We
get 24 516 positive samples from Drugbank; each sample
contains a pair of drugs and a label meaning whether
they can interact with each other (label 0 means no inter-
action with each other and vice versa). We get SMILES of
all drugs from Drugbank where we observed the number
of atoms on all drugs vary over a wide range (between
1 and 781). Thus, we first remove unqualified SMILES
along with their associated samples if drug SMILES have
atom numbers larger than 50, and the remaining number
of positive samples is 17 866. Second of all, we discard
drug SMILES that cannot be successfully converted into
graph by RDKit [32] and delete their associated samples
at the time, and the remaining number of positive sample
is 17 141. Finally, negative samples are generated by
randomly pairing drugs as along as this drug pair does
not have any known DDIs in DrugBank. We balance the
ratio of positive and negative samples to 1:1. Eventually,
34 282 DDI relationships with 17 141 positive DDI sam-
ples and 17 141 negative samples involving 1537 drugs
were obtained.

The data content used within the data set is: (i) The
compound ID of drug 1; (ii) The SMILES of drug 1; (iii) The
compound ID of drug 2; (iv) The SMILES of drug 2 and (v)
DDI label.

Baseline methods

To test the performance of our method, we compare
AMDE with the following baseline methods. Random
forest (RFC) [44] is a widely used classification method
dealing with sequence data; One-Dimension Convolu-
tional Neural Networks (1D-CNNs), Seq2seq [18], Long
Short-Term Memory (LSTM) [45] and Deepconv [46] are
neural networks for operating on sequence data. Graph
Attention Network (GAT) [47], DeepDrug [22] and Knowl-
edge Graph Neural network (KGNN) [24] are classification
models based on graph.

(i) RFC is a machine learning classification algo-
rithm. The Morgan fingerprint pairs of drugs are
concatenated as a high-dimensional vector and
fed into a classifier for prediction outcome. It
can handle thousand-dimensions of input vector
without dimension deletion and runs efficiently on
large data sets [44].

(ii) 1D-CNN is a neural network for processing sequen-
tial data. It uses an integrated fingerprint of Morgan
fingerprint and circular fingerprint as input and
predicts DDIs by using CNN [40].

(iii) DeepDrug is a deep learning method for predicting
DDIs. It uses SMILES string as input and four-layers
GCN to extract the features of the drug. Pairs of drug
features are sent to a fully connected layer to predict
the DDI outcome [22].

(iv) KGNN is a knowledge graph-based DDI prediction
method. A knowledge graph is constructed for all
drugs in which features of drugs in the knowledge
graph are encoded by GCN and the obtained drug
feature vectors are fed into a dense layer to predict
DDI outcome [24].

(v) Seq2seq [18] is an algorithm based on RNN [42]. Mor-
gan fingerprint is used as input; then, an RNN is used
as encoder to encode drug feature, and eventually,
another RNN is used as decoder to predict whether
DDI exists.

(vi) Deepconv [46] uses Morgan fingerprint as input. It
extracts drug features through DNN. The features of
drug pairs are concatenated as input to a dense layer
to predict DDI outcome.

(vii) LSTM [45] is a method of processing time series. It
uses Morgan fingerprint as input. After embedding
Morgan fingerprint, LSTM is used to encode features.
Pairs of drug features are sent to a fully connected
layer to predict the DDI outcome.

(viii) DeepDDI [48] is a deep learning method for predict-
ing DDIs. It constructs a drug similarity matrix based
on fingerprint and then reduces the feature dimen-
sion using PCA and predicts DDI through DNN.

(ix) GAT [47] is a graph-based deep learning algorithm.
It uses one-layer GCN with eight attention heads to
extract drug features, then the drug pair features are
sent to a feed forward neural network to predict DDI
outcome.

Metrics

We denote the true label and predicted values of DDIs
by P and P̂, respectively. Four metrics are applied to eval-
uate the performance of the model, including accuracy
(ACC), area under ROC curve (AUROC), area under PRC
curve (PRAUC) and F1 score. These metrics have different
emphasis. ACC focuses on assessing the model’s ability to
correctly classify samples, while F1 focuses on assessing
the model’s sensitivity. When dealing with classification
problems, AUROC is suitable for class-balanced data sets,
while PRAUC is better able to distinguish the generaliza-
tion ability of models in the case of unbalanced data sets.

Evaluation settings

Different validation methods have been used for measur-
ing the model performance. We refer to previous studies
[34, 49] using two types of data sets, 100 and 50%.

Initially, we randomly select half of the data from 100%
data set to form 50% data set. There are 34 282 samples
in 100% data set and 17 141 samples in 50% data set,
and they both involved 1537 drugs. Here, we divided the
both data set into training set, validation set and test
set in the ratio of 8:1:1. For each model, we repeated
the experiment five times to obtain reliable and stable
results on 100 and 50% data sets, respectively. For each
data experiment, we keep the same values of the involved
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Table 1. Performance of AMDE-sum and AMDE-cat in different message passing number (MP-Num) (AMDE-sum and AMDE-cat mean
the use of different hybrid method in our model). The best result is in bold for each evaluation metric. F1 represents F1 score, ACC
represents accuracy, AUROC represents area under ROC curve

MP-Num AMDE-cat AMDE-sum

F1 ACC AUROC F1 ACC AUROC

1 97.53 ± 0.12 97.33 ± 0.18 98.97 ± 0.22 97.55 ± 0.12 97.24 ± 0.13 98.90 ± 0.13
2 97.60 ± 0.13 97.63 ± 0.22 99.01 ± 0.09 97.33 ± 0.25 96.68 ± 0.21 98.90 ± 0.23
3 97.57 ± 0.24 97.43 ± 0.21 98.37 ± 0.13 97.37 ± 0.17 96.42 ± 0.18 98.04 ± 0.19
4 97.22 ± 0.27 97.63 ± 0.19 98.03 ± 0.22 97.53 ± 0.30 96.44 ± 0.17 98.11 ± 0.22
5 96.57 ± 0.19 97.54 ± 0.13 97.90 ± 0.17 97.40 ± 0.18 96.19 ± 0.22 98.54 ± 0.16
6 95.24 ± 0.17 97.36 ± 0.12 98.15 ± 0.21 96.33 ± 0.22 96.15 ± 0.18 98.11 ± 0.17

parameters and use the same training set, validation set
and test set.

AMDE is implemented on PyTorch1.0.1 [50]. For graph
encoder, we set the size of the message vector to 25,
the times of message passing of two hybrid methods
sum and concatenation are 1 and 2 (we analyze this
parameter in the Sensitivity analysis section) and the
size of the generated 2D graph feature vector to 75. For
sequence encoder, we set the number of attention heads
of Transformer to 8 and the length of the final feature
to 75. We set the batch size to 128 and allow AMDE to
run for 50 epochs. We use Adam Optimizer with learning
rate of 1e−4 to select the best performing model from
the validation set based on AUROC performance, and the
model selected by validation is evaluated in the test set.

Sensitivity analysis
For choosing the hyperparameters that make our model
have the best performance, we do some sensitivity anal-
ysis experiments. We discuss the changes of various per-
formance parameters of the model in different message
passing number (MP-Num). We present the performance
variation of the model at MP-Num = {1, 2, 3, 4, 5, 6} in
Table 1. More detailed experimental results are shown in
supplementary Table 2.

It is found that performance of our model has
very small fluctuation as the value of message passing
number increases. This means that too many times
of message passing cannot contribute more valuable
information. Under the two feature hybrid methods,
AMDE-sum and AMDE-cat all perform well. The highest
average F1, ACC and AUROC of AMDE-sum are 97.60,
97.63 and 99.01%. The highest average F1, ACC and
AUROC of AMDE-cat are 97.55, 97.24 and 98.90%. It
is found that the standard deviation displacement of
the AMDE is quite small under all MP-Num, which
indicates that the framework of our model has a certain
stability. The value of parameters is the ones with the
best performance: MP-Num = 1 in AMDE-sum and MP-
Num = 2 in AMDE-cat (AMDE-sum and AMDE-cat mean
the hybrid method).

Results and analysis
To test the validity and robustness of AMDE, we
investigate AMDE-sum and AMDE-cat with sum or

concatenation in feature hybrid. AMDE-avg represents
the average performance of AMDE-sum and AMDE-cat.
We compare them with the baseline models on Drugbank
[43] data set. We would like to test the performance of
our model with less training data sets. Therefore, we
randomly select a half of the data from 100% data set
to form 50% data set (there are 34 282 samples in 100%
data set, 17 141 samples in 50% data set and they both
involved 1537 drugs).

Data experiments are repeated five times on 100 and
50% data sets, respectively. The mean and standard
deviation of all metrics are reported in Table 2. AMDE
achieves higher mean and small standard deviation in
all metrics, which achieve the best performance. It is
used four-layers GCN in DeepDrug to extract atom graph
feature of drugs. Pairs of features are concatenated and
passed to a dense layer to compute the final prediction.
Deepdrug performs better than GAT, which may be due
to the more layers of GCN used in DeepDrug because
those more layers make the vision of nodes wider and
the information contained in node richer. This shows
that the feature encoder based on atomic graph should
pay attention to the multihop neighbor information,
which is essential to the model performance for the DDIs
prediction. Encoding multihop neighbor information
requires more resources.

In AMDE, the graph encoder encodes the edge informa-
tion between connected atoms when encoding node fea-
tures, which adds more information to node features and
improves the quality of DDIs prediction tasks. The perfor-
mance of AMDE is also better than some models which
encode the sequence feature of drugs from fingerprints
(RFC, 1D-CNN, Seq2seq, LSTM, Deepconv and DeepDDI).
It is necessary to encode sequence features and atomic
graph features simultaneously for DDIs prediction task.
KGNN regards drug entities and entities in other fields
as nodes and the relationship between entities as edges.
From the perspective of KGNN, the feature of each drug
is on node level. The drug features encoded by our AMDE
are on graph level. The performance of KGNN is worse
than AMDE, indicating that viewing drugs as nodes in an
interaction graph is improper.

We conduct experiments at 50% data set to observe
the dependence on the amount of data of all models.
It is worth noticing that when we reduce the data by
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Table 2. Comparison between AMDE and baseline models. Bold indicates the highest evaluation metric scores, and ‘–’ means not
available. AMDE-sum and AMDE-cat mean the use of different hybrid method in our model; AMDE-avg is the average performance of
AMDE-sum and AMDE-cat. F1 represents F1 score, ACC represents accuracy and AUROC represents area under ROC curve; 100% data
set means 34 282 samples, and 50% data set means 17 141 samples

Model 100% data set 50% data set

F1 ACC AUROC F1 ACC AUROC

RFC 78.33 ± 0.28 78.90 ± 0.33 – 83.45 ± 0.22 80.64 ± 0.28 –
DeepDDI 81.43 ± 0.51 90.44 ± 0.43 92.18 ± 0.47 80.15 ± 0.40 89.54 ± 0.63 90.18 ± 0.33
1-D CNN 95.45 ± 0.50 95.33 ± 0.45 97.45 ± 0.18 94.22 ± 0.44 94.03 ± 0.31 97.62 ± 0.20
GAT 95.87 ± 0.19 95.39 ± 0.21 97.30 ± 0.18 95.80 ± 0.17 95.33 ± 0.20 96.88 ± 0.19
Seq2Seq 96.55 ± 0.21 96.01 ± 0.20 98.41 ± 0.19 95.37 ± 0.12 95.25 ± 0.25 97.86 ± 0.21
LSTM 96.35 ± 0.18 96.14 ± 0.22 98.49 ± 0.12 95.92 ± 0.16 95.72 ± 0.21 98.07 ± 0.18
DeepDrug 96.62 ± 0.22 95.89 ± 0.21 98.50 ± 0.16 97.17 ± 0.18 95.62 ± 0.17 98.51 ± 0.21
Deepconv 97.19 ± 0.19 97.30 ± 0.17 98.61 ± 0.22 97.23 ± 0.15 96.89 ± 0.12 98.47 ± 0.20
KGNN 96.30 ± 0.25 97.51 ± 0.13 98.67 ± 0.09 94.55 ± 0.20 94.23 ± 0.14 97.60 ± 0.17
AMDE-sum 97.55 ± 0.12 97.24 ± 0.13 98.90 ± 0.13 97.63 ± 0.11 97.64 ± 0.13 99.41 ± 0.14
AMDE-cat 97.60 ± 0.13 97.63 ± 0.22 99.01 ± 0.09 98.11 ± 0.09 97.37 ± 0.17 99.50 ± 0.11
AMDE-avg 97.57±0.13 97.43 ± 017 98.95 ± 0.11 97.87 ± 0.10 97.50 ± 0.15 99.45 ± 0.18

half, AMDE still maintains a stable performance and all
evaluation metrics remain optimal. We show the com-
parison of all metrics when the model is trained using 100
and 50% data sets, respectively, in Figure 3 (the results of
DeepDDI and RFC are not shown in Figure 3 for better
observation).

The evaluation metrics of our model remain stable
when the data set is reduced, which demonstrates
the good robustness of our model. The experiment
results show that our model AMDE is able to learn
the characteristic patterns of drugs from less data,
which overcomes the difficulties caused by small data
sets to some extent. The baseline model (RFC, 1D-CNN,
Seq2seq, LSTM, Deepconv, DeepDDI, DeepDrug, GAT
and KGNN) only learns single dimensional features.
When the data set is reduced, the features learned by
these models become inaccurate. AMDE learns the 1D
sequence features and 2D graph features from SMILES
strings, which encodes the information of the drug more
comprehensively. AMDE encodes features from multiple
dimensions, which can learn more features than other
methods even with less data for training. As a result,
AMDE shows consistent performance on data sets of
different volumes (100 and 50%) in DDIs predictions.

Simple ablation study
As mentioned earlier, the existing DDIs prediction mod-
els have limitations as they only learn the features of
drug from a single dimension. In this section, we consider
verifying the significance of our proposed model AMDE
to encode features in each dimension and investigate
the impact of simultaneous use of multidimensional
features on DDI prediction. The experiment is repeated
five times on each encoder to obtain reliable and stable
results on 100 and 50% data sets, respectively. The mean
and standard deviation of all metrics are reported in
Table 3.

It is found that our AMDE method outperforms the
single-dimensional feature encoder in all evaluation
metrics. Meanwhile, the fluctuation range of standard
deviation of AMDE in all evaluation metrics is also
very small. It shows that a feature encoder considering
multiple dimensions can adequately encode the features
of drugs, therefore improving the effect of DDIs predic-
tion task.

Identify potential DDIs
In this section, we discuss the ability of AMDE to predict
the potential DDIs. Firstly, it is selected a set of DDIs
that have never appeared in the training, validation and
test sets before. The data set contains 3723 samples
involving 150 drugs (1675 positive and 2048 negative
samples). Since the data set is unbalanced, we add an
evaluation metric PRAUC, which can better evaluate the
generalization ability of the model on unbalanced data
set. We use the trained models to predict these samples.
The mean and standard deviation are shown in Table 4.
Figure 4 shows the ROC curve and PRC curve of compare
models. KGNN, DeepDrug and Deepconv are selected as
the baseline, which perform well in the comparative
experiment. Our model AMDE shows better and stable
performance in the new DDIs prediction task.

Visual analysis

T-distributed stochastic neighbor embedding (t-SNE) [51]
is a machine learning algorithm used for dimensionality
reduction, which can visualize high-dimensional data,
so that we have an intuitive understanding of the
distribution of data. To further investigate why our model
is so effective, we reduce the dimension of the embedding
vectors learned by attention-based multidimensional
feature encoder (AMDE) to three dimensions by t-SNE
method for visualization, as shown in Figure 5. The
embedding vectors learned by our proposed model can
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Figure 3. Performance of different models on 100% data set (A) and 50% data set (B).

Table 3. The experimental results of ablation of AMDE. Transformer represents sequence encoder, and MPAN represents graph
encoder. The best result is in bold for each evaluation metric. F1 represents F1 score, ACC represents accuracy and AUROC represents
area under ROC curve

Model 100% data set 50% data set

F1 ACC AUROC F1 ACC AUROC

Transformer 97.03 ± 0.19 96.86 ± 0.12 98.52 ± 0.16 95.03 ± 0.21 95.91 ± 0.17 97.47 ± 0.12
MPAN 97.26 ± 0.16 97.14 ± 0.17 98.61 ± 0.13 97.41 ± 0.11 97.14 ± 0.14 98.42 ± 0.17
AMDE-sum 97.55 ± 0.12 97.24 ± 0.13 98.90 ± 0.13 97.63 ± 0.11 97.64 ± 0.13 99.41 ± 0.14
AMDE-cat 97.60 ± 0.13 97.63 ± 0.22 99.01 ± 0.09 98.11 ± 0.09 97.37 ± 0.17 99.50 ± 0.11

easily separate interacting drug pairs from noninteract-
ing drug pairs. This means that our model can learn
more differentiated feature representations, which is the
key for our model to perform well in the DDIs prediction
task.

Case analysis

Torasemide (DB00214) was initially used as a potent
diuretic, which is later found to be able to control blood
pressure and treat edema caused by heart failure, kidney
disease, cirrhosis of the liver [52], etc. It has been well
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Figure 4. Receiver Operating Characteristic Curve (A) and Precision Recall Curve (B) of compare models for new DDIs predict. The dotted line represents
a completely random model and the ratio of positive cases in the data set, for (A and B), respectively.

Table 4. Experimental results for compare models for new DDIs predict. The best result is in bold for each evaluation metric.
AMDE-sum and AMDE-cat mean the use of different hybrid method in our model. ACC represents accuracy, AUROC represents area
under ROC curve and PRAUC represent area under PRC curve

Model ACC AUROC PRAUC

KGNN 81.05 ± 0.34 89.97 ± 0.51 93.33 ± 0.23
DeepDrug 87.17 ± 0.22 91.28 ± 0.18 85.72 ± 0.14
Deepconv 87.79 ± 0.23 92.81 ± 0.19 89.47 ± 0.21
AMDE-sum 92.81 ± 0.21 97.57 ± 0.20 96.82 ± 0.17
AMDE-cat 90.03 ± 0.27 98.14 ± 0.19 97.5 0±0.13

Figure 5. t-SNE feature dimension reduction. The features extracted by
our AMDE are downscaled by using t-SNE and reduced to 3D space.
Features can be clearly distinguished. Where red indicates drug pairs
predicted to have interaction and blue indicates drug pairs predicted not
to have interaction.

tolerated with adverse effects of a mild, transient nature
reported by only small numbers of patients. Therefore, it
is valuable to further explore the function of Torasemide
(DB00214) in combination [53]. We use Torasemide

(DB00214) as an example and predict the most likely
drug to interact with it using our proposed model. The
drugs with the top 15 scores are shown in Table 5, all
of which were confirmed to interact with Torasemide
(DB00214). For drugs that do not appear in training
process, the results show that our model AMDE can
also accurately predict drugs with potential interactions
with them.

Conclusion
In this paper, we proposed a DDIs prediction model
AMDE, which encodes the multidimensional features
of drugs from the atomic graph and subsequences
of the drug at the same time. Extensive experiments
have shown that our model can achieve state-of-the-
art prediction performance, demonstrating the power of
multidimensional features in DDI prediction tasks. Our
model is a promising framework, and future work can
further optimize our model. It can also be applied to
other problems such as drug-target prediction, cancer
risk prediction and so on.
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Table 5. Top 15 drugs predicted for Torasemide (DB00214)

Rank Drugbank ID Drug name Verification method

1 DB00458 Imipramine Drugbank
2 DB00363 Clozapine Drugbank
3 DB01104 Sertraline Drugbank
4 DB01242 Clomipramine Drugbank
5 DB01224 Quetiapine Drugbank
6 DB01267 Paliperidone Drugbank
7 DB00726 Trimipramine Drugbank
8 DB00476 Duloxetine Drugbank
9 DB00176 Fluvoxamine Drugbank
10 DB01175 Escitalopram [54]
11 DB00334 Olanzapine Drugbank
12 DB00679 Thioridazine Drugbank
13 DB01238 Aripiprazole Drugbank
14 DB01095 Fluvastatin Drugbank
15 DB00682 Warfarin Drugbank

Materials and methods
The code is available at https://github.com/wan-Ying-
Z/AMDE-master.

Data availability statement
The DruBank dataset is open-source.

Key Points

• We propose an attention-based multidimen-
sional feature encoder (AMDE), which encodes
one-dimensional sequence features and two-
dimensional atomic graph features of drugs. The
features it encodes represent the information of
drugs more precisely.

• The multidimensional feature decoder further
compresses the drug feature vector and is able
to strongly associate features with prediction
results.

• It is provided a new method of feature fusion:
integrating drug features from multiple dimen-
sions can enhance the effectiveness of down-
stream prediction tasks.

• AMDE has achieved advanced results in predict-
ing new DDIs.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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