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TransFusionNet: Semantic and Spatial Features
Fusion Framework for Liver Tumor and Vessel

Segmentation Under JetsonTX2
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and Xiangyu Meng

Abstract—Liver cancer is one of the most common ma-
lignant diseases worldwide. Segmentation and reconstruc-
tion of liver tumors and vessels in CT images can pro-
vide convenience for physicians in preoperative planning
and surgical intervention. In this paper, we introduced a
TransFusionNet framework, which consists of a semantic
feature extraction module, a local spatial feature extrac-
tion module, an edge feature extraction module, and a
multi-scale feature fusion module to achieve fine-grained
segmentation of liver tumors and vessels. In addition, we
applied the transfer learning approach to pre-train using
public datasets and then fine-tune the model to further
improve the fitting effect. Furthermore, we proposed an
intelligent quantization scheme to compress the model
weights and achieved high performance inference on Jet-
sonTX2. The TransFusionNet framework achieved mean IoU
of 0.854 in vessel segmentation task, and achieved mean
IoU of 0.927 in liver tumor segmentation task. When pro-
filing the Computational Performance of the quantized in-
ference, our quantized model achieved 4TFLOPs on Node
with NVIDIA RTX3090 and 132GFLOPs on JetsonTX2. This
unprecedented segmentation effect solves the accuracy
and performance bottleneck of automated segmentation to
a certain extent.
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I. INTRODUCTION

L IVER cancer is the sixth most common primary cancer
worldwide and the fourth leading cause of cancer death [1].

Therefore, there is an urgent need for effective prevention pro-
grams and treatments to reduce the harm caused by liver cancer.
In the early stage of liver cancer, potential risks of coming serious
liver cancer can be eliminated by surgical removal of the tumor or
local treatment. In recent years, computer-assisted liver surgery
(e.g., ablation and embolization) has been increasingly used for
the treatment of primary and secondary liver tumor patients
which are not eligible for common surgeries [2]. Computed
Tomography (CT), as part of computer-assisted liver surgery,
is a commonly implemented for clinical diagnostic approach
to improve the visualization on liver, vessels and tumors [3].
Prior to the computer-assisted liver surgery, it is necessary for
physicians to have information about the liver tumor contour
and about its vessel system. Segmentation and 3-dimensional
(3D) reconstruction according to CT images of patients is one
of the most effective methods which help physicians to make
preoperative planning and intraoperative navigation. However,
there are some challenging obstacles in computer-assisted liver
interventions. The most critical one is that segmentation of
liver vessels and tumors from CT images is manual, which is
time-consuming, and labor-intensive. It may lead to the inability
to precisely pinpoint the vessels that supplies nutrition for the
hepatic tumor, thus affecting hepatic embolization procedure,
ablation and so on. As a result, there is an urgent need for an
intelligent auxiliary diagnostic key embedded component which
can be flexibly deployed in any CT instrument. Meanwhile infer-
ential results of liver tumor and artery can be quickly generated
with guaranteed precision, which assist physicians to complete
rapid diagnosis and carry out next liver surgery plan.

In previous studies, many methods have emerged for seg-
menting liver vessels or tumors, but none of which considers
segmenting vessels and tumors at the same time. This is due
to the complicated background, heterogeneous shape and sur-
rounding vessels irregularity of the tumor making it difficult
to segment the hepatic vessels that supply nutrition for the
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tumor [4]. Manual liver vessel and tumor segmentation is time
consuming, tedious and sometimes impossible when there are
plenty of patients. Traditional methods attempt to segment livers
or tumors by active contour methods, tracking methods, and
feature learning methods. Active Contour Model (ACM) is to
detect object boundaries based on curve evolution theory and
level set approach. Cheng et al. [5] implemented ACM with
precise shape dimension constraints based on CT scan models
for contour point detection of vessel cross-sections to plot vessel
boundaries. Chung et al. [6] proposed an active contour method
to segment portal vein and hepatic vein based on the regional in-
tensity distribution of the image and the probability map of vessel
occurrence. However, the active contour model tends to fall into
the local optimum problem when extracting complex regions in
the vector field, and cannot handle gray scale inhomogeneous
images well. The tracing method starts by manual initialization
or image preprocessing to initiate a single or specified number of
seed points in the vessel, and then finds subsequent points based
on the image derived data as a way to trace the vessel [3]. Track-
ing methods mainly include model-based algorithms [7], [8],
[9], least cost path-based algorithms [10], [11]. However, if the
initial seed points of these methods are not correctly positioned,
the final segmentation results can be seriously affected.

In order to segment vessels or tumors from CT images,
feature learning methods need to perform feature extraction
from images and labels based on real segmentation to train
machine learning models such as random forest (RF) [12], [13]
and support vector machine (SVM) [14], [15] for automatically
segmenting vessels or tumors from CT images. However, the
robustness and generalization ability of machine learning mod-
els are limited. In recent years, many deep learning models, like
convolutional neural networks [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], have gradually shown promosing perfor-
mances in the field of medical image segmentation. Currently,
segmentation models based on fully convolutional networks [26]
and UNet [27], [28] architectures are the most effective ones.
Huang et al. [29] combined 3D-UNet with data enhancement
techniques, a variant of dice coefficient, to reduce the effect
of high imbalance in some extent between hepatic vessels and
background classes. Zhou et al. [30] proposed UNet++, a model
that combines a deep supervised encoder and decoder and links
the sub-networks of both through a series of hops as a way
to reduce the semantic gap between the encoder and decoder
feature mappings. Recently, Transformer [31], [32], [33], [34],
[35], [36] has made great achievements in the field of deep
learning, and TransUNet proposed by Chen et al. [37] applies
transformer as an encoder to extract global contextual features
and combines it with convolutional neural network for decoding.
For segmentation of liver vessels and tumors, a high degree of
accuracy must be achieved to enable clinical applications. In
view of above mentioned methods including other UNet-based
methods [38], [39], [40], performances still can be improved in
terms of accuracy and efficiency despite of some attempts in
architecture.

Deep learning has shown excellent capabilities in solving
complex learning problems. Due to the need for real-world
Applications, networks are becoming larger, which poses a

major challenge for deploying deep learning models on the
client side [41]. In recent years, there are many advanced deep
learning models deployed on FPGAs or ASICs. For example,
Transformer is deployed in FPGA [42], [43] and ASIC [44].
Wei et al. [45] introduced a fast and efficient lightweight net-
work called Turbo Unified Network (ThunderNet). This model
implements fast and efficient inference on the Jetson platform.
Huang et al. demonstrate EDSSA-an Encoder-Decoder seman-
tic segmentation networks accelerator architecture [46] which
can be implemented with flexible parameter configurations and
hardware resources on the FPGA platforms that support Open
Computing Language (OpenCL) development. Ma et al. propose
a specific dataflow of hardware CNN acceleration to minimize
the data communication while maximizing the resource utiliza-
tion to achieve high performance [47]. Tsai et al. presented the
design of FPGA-based accelerator for DNN, which takes the
advantages of low latency and low usage, and keeps the 96%
recognition rate [48]. In the process of model transplantation,
the tradeoff between speed, volume and accuracy of model
inference is the focus of various researchers. With the develop-
ment of medical image segmentation methods, related studies
show significant precision in different lesion segmentation of
multimodal medical data. Lightweight model deployment and
transplantation of high-precision medical segmentation models
into embedded micro-devices will greatly promote the develop-
ment of automated surgery and automated diagnosis.

To fully harness the effects of Liver tumor vessel segmentation
and 3D reconstruction, some urgent problems need to be solved:
(1) How to design an accurate and fast automatic segmentation
and 3D reconstruction method for liver tumor and vessel? (2)
How to design a segmentation framework capable of learning
spatial semantic fusion features to improve the segmentation ac-
curacy of tumor and vascular details? (3) How to design efficient
model quantification methods to enable high performance model
inference and 3D reconstruction of tumors and vessels? (4) How
to optimize the computational and storage overhead of the model
to build a lightweight model and deploy the segmentation model
to JetsonTX2 devices?

The main contributions of this paper are:
1) We propose the TransFusionNet framework that com-

bines spatial, semantic and edge features of CT images to
achieve accurate fine-scale segmentation of liver tumors
and intrahepatic arterial vasculature.

2) We propose an intelligent quantization scheme based on
reinforcement learning to compress the weights of the
model, so that the model achieves the best inference
performance on both JetsonTX2 and node with NVIDIA
RTX3090 GPU.

3) By carefully quantifying, our model achieved high perfor-
mance liver vessel tumor inference and 3D reconstruction
on Node with NVIDIA RTX3090 GPU and JetsonTX2
device.

II. METHODS

In order to better complete the segmentation task of liver
tumors and blood vessels, we design a novel segmentation
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Fig. 1. Overview of the TransFusionNet model. (a) Transformer-based feature extractor. (b) Multi-layer local feature extraction module. (c) Fusion
decoder for multiscale feature. (d) Edge Extraction Module.

architecture called TransFusionNet. We introduced a new feature
extraction module fused with Transformer and CNN. Based on
this module, the network can effectively extract image spatial
features and semantically related features. At the same time, we
proposed an Edge Extraction Module (EEM) which can signifi-
cantly capture the edge feature of the image to cooperate with the
training of the segmentation network. The model designed based
on our ideas can effectively learn rich feature information, and
can effectively ensure the segmentation accuracy of the edges of
difficult-to-segment objects, which are critical in vascular and
liver tumor segmentation tasks. The framework of our model is
shown in Fig. 1.

A. Transformer-Based Semantic Feature Extraction
Module

We introduce an encoder that can learn the global feature rep-
resentation, which consists of a feature embedding module based
on a feature extraction backbone and a feature extraction module
that senses the semantically related information representation
of the image based on the transformer [31]. This module adopts a
brand-new feature extraction idea, by semantically representing
the features of the picture and learning the global representation
of semantic features.

The input image i ∈ RC×H×W is first fed into the feature ex-
traction backbone network. The network can extract the spatial
information features of CT images and output the feature map
x ∈ RC ′×H ′×W ′

. We divide the feature map x learned by the
backbone into a series of patches xip ∈ RC×P 2

, i = 1, . . . , N ,
where the size of each patch is P × P , and the number of
patches denote by N = H ′×W ′

P 2 . For each patch, we use a con-
volution operation with a kernel size of P × P to obtain the

information Ei
info of i-th patch to form an information matrix

{E1
info, E

2
info, . . ., E

N
info}. In order to better learn location

information using Transformer, Dosovitskiy et al. [49] perform
a learnable location embedding for each patch to obtain the
location matrix {E1

pos, E
1
pos, . . ., E

N
pos} of the N patches. The

feature of the i-th patch can be formulated by the following
equation:

Ei = Ei
info + Ei

pos. (1)

We adopt this position encoding method, so that the feature
extraction module can effectively learn the position information
of the features. We next feed the above obtained feature matrix
E = {E1, E2, . . . , EN} of x into multi Transformer layers to
learn semantically representation of the feature map. In compar-
ison to traditional convolution operation, transformer adopts a
multi-head self-attention mechanism, and its core formulation
is shown in (2):

y =
h∑

i=1

w∑

j=1

n∑

k=1

(softmax(QT
ijk ×Kijk)× Vijk), (2)

where h and w denote by width and height of the feature matrix
E after feature extraction and location embedding. And n is
the number of self-attention mechanism heads. Qijk,Kijk, Vijk
denote the query, key and value obtained by three linear transfor-
mations of the inputEij in each self-attended head, respectively.
y ∈ RC×H×W denotes the output after one multi-headed self-
attention. We stacked 12 transformer layers, and the output of
the last layer can theoretically learn to incorporate a rich context
feature representation of the CT image under a wider range of
perceptual fields. We then feed the output of the Transformer
layers into a three-layer convolution operation. The final output
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Fig. 2. BottleNet network structure with SEblock.

feature map consist of global high-level abstract information,
effectively solving the problem of missing information caused
by perceptual field defects in traditional deep CNN networks.

B. Local Spatial Feature Extraction Module

Transformer-based extraction module is a very powerful for
semantically information feature, because the Transformer fea-
ture extraction module has advantages in learning semantically
related features. In many ways, however, Transformer is not an
effective replacement for traditional convolutional operations.
For extraction of more subtle feature in some images such as
features of interest regions and tiny vessel feature, CNN is
nothing but the perfect solution. We designed a local residual
network encoder based on multi-layer SEBottleNet stacking, as
shown in Fig. 2. The encoder consists of a six feature extraction
module. A max pooling operation is performed to extract the
high-level feature representation after feed feature map to each
feature extraction block. The input CT image x ∈ RH×W is first
fed forward to a CNN module for high-level feature extraction,
and the feature mapu ∈ RC×H×W is obtained. Then, the feature
map u is fed into a deep residual feature extractor stacked by five
layers of SEBottleNet, each of which is used for learning the con-
text features under the local perception field. BottleNet residual
network [50] retains all the advantages of residual network and
significantly reduces computation interval and computational
burden. We introduced the Squeeze and Excitation (SE) [51] in
the BottleNet to enhance the interdependence between feature
map channels. The structure of the SEBottleNet is shown as in
Fig. 2. The mean value ec ∈ RC of the feature embedding for
each channel in the feature map U ∈ RC×H×W can be obtained
from the Squeeze section, as shown in the following equation:

ec =
1

W ×H

W∑

i=1

H∑

j=1

uc(i, j). (3)

Where the uc(i, j) ∈ RC is the pixel in feature map U . The
Excitation section can learn the feature weights ec for each
channel by sc:

sc = δ(G(ec,W)). (4)

Finally, the vector product Õ of s and u is obtained by the Scale
operation, and this is the final output of the SE module:

Õc = sc × uc, (5)

Fig. 3. An example of training dataset (a) input CT image. (b) Image
canny map extracted from CT image by Canny algorithm. (c) Segmen-
tation labels of tumors and blood vessels. (d) Edge label for tumors and
blood vessels.

where Õc is the feature map of a feature channel.
The SEBottleNet residual network splits the traditional con-

volutional operation into multiple modules to ensure that each
module has a different feature extraction task. We introduced
the Squeeze and Excitation module in the middle of the module
to better learn the importance of the feature map channel dimen-
sions, so that SEBottleNet has a stronger learning focus in the
feature extraction process. Through the continuous stacking of
SEBottleNet and maxpool, the encoder can continuously extract
the local feature representation of the input CT image. Mean-
while, since each SEBottleNet is set with residual connections,
it enables the encoder to effectively mitigate the degradation
problem caused by network deepening.

C. Edge Extraction Module

Since the hepatic arterial vessels are very small, further re-
fining the segmentation of the vessels and liver is a challenging
task. In order to allow the model to learn more detailed spatial
features, we introduce the EEM, which is specially designed to
learn the edge features of blood vessels and tumor regions of
interest and fuse the edge features to the segmentation network.
The structure of this module is shown in Fig. 1(d). The EEM
takes the feature maps of feature extraction layers and the CT
edge map (Fig. 3(b)) extracted by the Canny algorithm [18] as
the input, and predicts the edge result e ∈ RH×W . This module
predicts edge information and combines the predicted feature
maps into the segmentation network. To accomplish this task,
we process segmentation annotations to obtain edge annotations
er (Fig. 3(d)), which can be used as a supervision condition for
this module.

In this module, we used Gated Excitation Convolution (GEC)
layer. GEC is the most important unit in EEM and it can filter
out some irrelevant information to focus on extracting image
edge features. GEC is applied between the EEM and the feature
extraction module. It uses gating mechanisms to deactivate its
own activations that are not deemed relevant by the higher-level
information contained in the extraction module [52]. At the same
time, we introduce an excitation module in the gating activation
layer to learn the importance of different feature maps.

We define ti, ci ∈ RC×H
2i×W

2i as the feature maps of the
Transformer module and the local feature extraction module,
and i denote the number of locations. Before using the GEC
module, ti and ci were fed into a convolutional layer C1×1 to
obtain the image-dimensional feature maps t′i, c

′
i ∈ RH×W . Let
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Fig. 4. Network framework of fusion module.

ei ∈ RC×H×W denote the feature map synthesized by EEM.
Given the feature maps t′i, c

′
i and ei, an excitation convolutional

layer is applied to generate the sigmoid activation αi ∈ RH×W :

αi = σ(C1×1(Fse(cat(t
′
i, c

′
i, ei)))), (6)

where Fse denotes squeeze and excitation option as shown
in (3)–(5). Finally, αi and ei is fed into Gated Convolution
layer [52], [53], [54] and generate the e′i. The Gated Convolution
layer is compute as

e′i = C1×1((e
′
i × αi) + e′i). (7)

Theoretically, GEC can be simply regard as a collection of
attention for the spatial dimension and channel dimension of
the feature map. Through GEC operation, the attention maps
αi selectively preserve the edge semantic features. We cancel
the GEC operation on the shallow feature maps of the feature
extractor, since the images feed to the convolution layer mainly
learns the general low-level features, at the same time, the output
feature map retains rich edge information. As the network deep-
ens, the feature map will retain high-level features. Using GEC
operation can effectively weight the useful edge information of
high-level features in theory.

The Canny operator can effectively filter out the irrelevant
features of the image to obtain the canny image as shown in
Fig. 3(b). We think it is applicable for medical image segmenta-
tion. Therefore, we firstly concatenate the canny image and the
last GEC module output en. Then we feed them together with the
output feature maps of the two feature extractors to the Fusion
Module. At the same time, the edge extraction module uses edge
loss as the loss function and edge label as the supervision to
optimize the prediction edge map.

D. Multi-Scale Feature Fusing Module

In this section, we introduce the multi-scale feature fusion
decoding module to sample the semantic features learned by the
three modules. This module takes the feature maps extracted by
the three modules as the input and outputs the predicted category
distribution map ŷ ∈ RK×H×W , where K represent the semantic
classes.

We introduce a fusion module, which mainly fuses the feature
maps of the three feature extraction modules. Fig. 4 shows the

structure of this module. We design the module with reference to
the spatial pyramid pooling (SPP). Firstly, the module usesC1×1

and C3×3 convolution to extract features from the concatenation
result of the semantic feature map and spatial feature map
respectively. Next, we feed it into the pooling layer and fused
the edge feature map. Through the above operations, the feature
maps of three different receptive fields are obtained. Finally, we
sample and concatenate these three feature maps to output the
fused feature map. Theoretically, the feature map output by these
module can retain rich spatial features, semantic related features
and edge features.

In the process of continuous feature extraction layer by layer
in the coded network, the low-level information of the feature
map is continuously filtered and the high-level information is
extracted. UNet uses skip connections to conduct the feature
maps of the encoding module of each stage to the decoding
module of the corresponding stage, and the network can fully
learn the feature maps of different levels of the image. We adopt
the skip connection operation from UNet and introduce skip
connections to different feature encoders to allow the whole
network to better learn the feature information of different
encoders at different levels. The skip connection introduced in
the local feature extraction module is similar to the traditional
UNet module, which combines the short-range skip connection
(residual connection) and the long-range skip connection of
SEBottleNet. As for the Transformer based feature extraction
module, we first introduce skip connections in the encoding
process of the backbone network to connect the intermediate
feature maps in the forward propagation process of the backbone
embedding network, which improves the low-level feature loss
in the feature embedding process of the backbone network. Next,
we add skip connections to the feature maps with global feature
representations after Transformer feature encoding fusion to
fuse the global low-level features. Eventually, after continuously
fusing low-level feature maps of different scales, the decoder can
learn the semantic information of images from coarse to fine.

E. Multi Task Training Strategy

We propose the EEM to cooperate with the segmentation
task of the model, so we train the model to complete semantic
segmentation and edge information segmentation at the same
time. We introduce the joint optimization of edge loss and
segmentation loss respectively. At the same time, in order to
better ensure the consistency of multi task learning optimization,
we set up a regularization methods to balance the two losses.

We use Dice and Cross Entropy (CE) as the loss function of
segmentation task to predict semantic segmentation y:

Lθ,ψseg = λ1LDice(y, ŷ) + λ2LCE(y, ŷ), (8)

where y ∈ RH×W denotes the real semantic label map of liver
tumor and vessel. In the (8), λ1 and λ2 represent hyper parame-
ters. As for edge prediction, we use Binary Cross Entropy (BCE)
loss. In this experiment, the model mainly focuses on tumor
and vascular segmentation. We extract their common edges to
obtain edge label ê ∈ RH×W (Fig. 3(d)) and take ê as the loss
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supervision. Therefore, the edge loss can be expressed as:

Lθ,ψedge = λ3LBCE(e, ê), (9)

where, e represents the edge predict map of the edge extraction
module. It is worth noting that in the optimization process, the
parameters of feature extraction modules and edge extraction
modules will be optimized based on loss. Next, we input the
feature map output by the edge extraction module into the fusion
module to predict the segmentation results. Therefore, the prior
knowledge learned by the edge extraction module is retained
in y. At the same time, the segmentation loss will pay more
attention to the edge features in the optimization process.

We introduce regularization methods to make the model
cooperate better in the training process. As mentioned above,
y ∈ RK×H×W represents the predicted segmentation map and
e ∈ RH×W represents the predicted edge graph. Therefore, we
introduce shape regularization, which can be expressed as:

Lθ,ψsreg = λ4||Sigmoid(⊕y)× e− e||, (10)

where ⊕ represents the pixel-wise addition of y without the
background label map which can be implemented using kernel
fixed convolution operator. This operation outputs a label map
containing the predict region of the tumor and blood vessels.
In the beginning of model training, since the edge extraction
module was random initialized and cannot accurately predict
the e, (10) does not play any role. We therefore introduce a
dynamic adjustment strategy, which is set λ4 to 0 before 100
epoch and λ4 ≥ 0 after 100 epoch.

Finally, the loss function of the model is:

Ltotal = Lθ,ψseg + Lθ,ψedge + Lθ,ψsreg. (11)

We set the epoch to 300, the initial learning rate to 0.001 (using
the cosine annealing learning rate decay method), and the batch
size to 8. The model is trained using an SGD optimizer with a
momentum of 0.9 and a weight decay of 1e-4.

F. Applying Transfer Learning to TransFusionNet

The TransFusionNet can significantly learn full-resolution
context feature information, and its segmentation effect in the
public dataset of blood vessels and liver tumors is significant.
However, due to the scarcity of the enhanced CT images of liver
cancer after the screening and the difficulty of labeling tumors
and blood vessels, we obtained CT images of 18 patients. Too
little data will inevitably affect the performance of the model and
deepen the over-fitting problem. For this purpose we introduce
a transfer learning strategy, which does not require exactly
representative training data and is able to take advantage of the
similarity between datasets to capture specific prior knowledge
during the training phase of the model in order to construct new
segmentation models.

We first pre-trained the models using the public datasets
LITS and 3Dircadb to obtain a liver tumor segmentation model
and a liver vascular segmentation model, respectively. Then,
we use our liver tumor data and liver vascular data to retrain
the model obtained by pre-training. When we need to perform
segmentation of liver tumor and blood vessels of CT images, we

Fig. 5. Overview of TransFusionNet quantization using reinforcement
learning. We set the IOU difference as the reward of the model. The
Agent can automatically search for the optimal bitwidth strategy based
on the reward. Finally, we quantize the model according to the optimal
bitwidth and fine-tune the model to construct a fast and low storage
overhead model.

only need to input one CT image, and the model will segment
the tumor and blood vessel parts of CT images respectively.

G. Quantification and Fine-Tuning of Inference Models

TransFusionNet involves different kinds of feature extrac-
tion modules and feature fusion sampling modules with high
computational and storage overhead for training and inference,
which brings challenges for the deployment of the model on
embedded devices. We proposed a model quantization scheme
based on Hardware-Aware Automated Quantization (HAQ) [55]
to compress the CNN and Dense layer of the framework and
optimize the computational and storage overhead. Fig. 5 shows
the quantization method.

We searched the TransFusionNet layer-by-layer and create
the index of each basic quantitative layer. We define the state Sk
of the CNN layer k was

Sk = {k, cin, cout, dkernels, d, nparams, idw, iw, ak−1}, (12)

where k was the layer global index, cin was input channel size,
cout was output channel size, dkernel was the kernel size, s was
the kernel stride, d was the feature map size, nparams was the
parameters, idw was the indicator for depthwise convolution, iw
was the indicator for weight, and ak−1 was action during the last
step. Meanwhile, the state Sk of Dense layer k was denoted as

Sk = {k, fin, fout, d, nparams, iw, ak−1}, (13)

where k was the layer global index, fin was the input feature
size, fout was the output feature size, d was the feature size,
nparams was the parameters, iw was the indicator for weight,
and ak−1 was action during the last step.

We adopt continuous action space and round to discrete value
which was

bk = round(bmin + ak × (bmax − bmin)), (14)
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where bmax and bmin was the min and max bandwidth. Given
the action ak from the agent, the quantitative strategy is denoted
as

Q(w, ak, c) = round(clip(w, c)/s)× s, (15)

where clip(w, c) was to truncate the weight w into [−c, c], c
was the optimal value that minimizes the distance between origin
weightw and quantized weight, and swas the scale factor which
was denoted as s = c/(2ak−1 − 1). After each quantification we
retrain the model for one more epoch and use IoU (Intersection
over Union) in the (20) as the metrics to analyze the segmentation
performance. We then calculate the reward function:

R = μ(IoUorigin − IoUquant). (16)

In our experience, we set μ to 0.1.
For the Agent setting, we refer to the deep deterministic policy

gradient (DDPG) [56] method to construct an off-policy actor-
critic algorithm based on the continuous control problem. We
specify that one step represents the decision of agent to assign
bit-widths for a specific layer, and one episode indicates the
agent completes the assignment for all layers. Therefore, the
Q-function in the exploration process is represented as

Q̂i = Ri + γ ×Q(Si+1, μ(Si+1)|θS), (17)

where γ is the discount factor, and we set to 1 in our experiment.
Based on the Q-function, the loss function can be approximated
by

L =
1

N

N∑

i=1

||Q̂i −Q(Si, ai|θS)||1, (18)

where N denotes the number of step in an episode.
By optimizing the loss function, we obtain the optimal bit-

width quantization strategy for each layer of TransFusionNet.
Finally, based on the optimal strategy we obtain the quantization
bit-width of each layer of the network, and after quantization and
fine-tuning, we obtain the light-weight model of TransFusion-
Net.

H. 3D Reconstruction of Tumor and Vessels Using
Light-Weighted TransFusionNet

Medical image segmentation has a wide range of applica-
tions in medical research and practice fields such as medical
research, clinical diagnosis, pathological analysis, computer-
assisted surgery, and three-dimensional simulations. In this sec-
tion, we use light-weighted TransFusionNet to predict the liver
vessel and tumor segmentations under JetsonTX2 and make 3D
reconstruction of tumors and vessels based on the segmentations.

We define segmentation model F : RN×H×W →
RN×C×H×W , which has been fully trained. Next, the arterial
phase CT-enhanced image x ∈ RN×H×W feed into F to predict
the liver and vessel label map o ∈ RN×C×H×W where C = 3 in
this segmentation task. We need to construct 3D reconstruction
result according to the segmentation label map o. Thus, to
obtain segmentation result y ∈ RN×H×W from label map o, we

use the following equation:

y = G ∗ argmax(o). (19)

Where G denotes Gaussian filter. Finally, we save the recon-
struction results y in .nrrd format and use 3Dslicer for visual
display.

I. Evaluation Metrics

In order to better evaluate our model segmentation perfor-
mance from multiple perspectives, we selected 5 evaluation
metrics including: IoU, DSC, VOE, Recall, Precision. IoU is
the calculation of the intersection of the real annotation and the
segmentation result. The calculation method is

IoU =
Rpre ∩Rreal
Rpre ∪Rreal

, (20)

where Rpre represents the segmentation result predicted by the
model, and Rreal represents the actual segmentation result. The
DSC (Dice Similariy Coefficient) represents the ratio of the area
where the segmented image and the real image intersect to the
total area. The calculation method is

DSC =
2× (Rpre ∩Rreal)

Rpre +Rreal
, (21)

where Rpre represents the segmentation result predicted by the
model, andRreal represents the actual segmentation result. VOE
(Volumetric Overlap Error) represents the difference between
the area of the segmented image and the real image, and usually
represents the error rate of segmentation. The specific calcula-
tion method is

V OE =
2× (Rpre −Rreal)

Rpre +Rreal
. (22)

Precision is the proportion of pixels that are actually not in
the region of interest correctly judged as not in the region of
interest. It measures the ability to correctly judge the pixels that
are not in the region of interest in the segmentation experiment.
Its calculation method is

Precision =
I −Rpre ∪Rreal

I −Rreal
. (23)

Where I is the original input image. Recall is the proportion
of pixels that are correctly judged as pixels in the region of
interest. It measures the ability to correctly segment the region
of interest.Its calculation method is

Recall =
Rpre ∩Rreal

Rreal
. (24)

For the computational performance analysis, we use floating
point operations per second (FLOPs) as the evaluation metric.
The number of floating point operations (FLOP) of the inference
model can be collected using fvcore. Then for a patient with n
CT images, the FLOPs are calculated as

FLOPs =
n× FLOP

t
, (25)

where n denote the number of CT slices, t denote the total
inference latency.
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III. EXPERIMENTAL AND DISCUSSION

A. Experimental Setup

1) Dataset: The LITS (Liver and Liver Tumor Segmenta-
tion, https://competitions.codalab.org/competitions/17094)
dataset contains 130 cases of tumors, metastases, and
cysts. These CT scans have large spatial resolution and
field of view (FOV) differences [4]. 3Dircadb (3D Image
Reconstruction for Comparison of Algorithm Database,
https://www.ircad.fr/research/3d-ircadb-01/) is a public dataset
that can be used to train and test liver vessel segmentation
methods, including 20 patients in different image resolutions,
vessel structure, intensity distribution and liver vessel
comparison CT enhancement [29]. At the same time, we
collected CT-enhanced images of 18 patients and constructed
Liver Tumor Blood Vessel (LTBV) dataset. In order to clearly
distinguish the blood vessels in the liver and reduce the burden
of labeling, we only retained the arterial phase images of 18
patients. Due to the scarcity of trainable samples, we only divide
into training dataset and test dataset. Our research is carried
out following the principles of the Declaration of Helsinki, and
we have got approval from the Ethics Committee of Qingdao
Municipal Hospital. The LITS and 3Dircadb datasets cover a
wide range of CT images with different resolution differences
and field of view (FOV) differences. We use these two datasets
for model pre-training, and use our private dataset for the
fine-tuning training of the model for hepatic artery and tumor
segmentation tasks. The above three datasets are divided into
training set and test set according to the ratio of 8:2.

2) Machine Configurarion: The training and quantization of
the model were run on servers with two NVIDIA Tesla V100
(32 GB) GPUs, and the inference of the model was run on servers
with one NVIDIA 3090 GPU. To test the portability of the mod-
els, we used the JetsonTX2, a new embedded device introduced
by NVIDIA. Fig. 6 shows the architecture of the jetsonTX2.
This device is equipped with Nvidia Tegra X2 processor which
consists of a GPU with a pascal architecture, NVIDIA Denver
2 ARM CPU with two cores and ARM Cortex-A57 with four
cores. Denver 2 ARM CPU is suitable for administration tasks,
ARM Cortex-A57 is for multi-threaded computationally inten-
sive tasks, and the GPU contains 256 CUDA cores for highly
computationally intensive tasks. The entire device integrates
8 GB LPDDR4 memory and 32 GB eMMC storage, which
achieved 0.63TFLOPs with low power consumption.

B. Performance Comparison With State-of-The-Art
Methods

We choose 5 segmentation models to compare with our
method, the 5 models are SegNet [16], UNet [27], UNet++
[30], UNet3+ [57], TransUNet [37]. At the same time, we
divide the proposed method into TransFusionNet(TFN) and
TransFusionNet with edge module(TFNEdge), and evaluate
them respectively. We first compare the segmentation effects
of five models on blood vessels and tumors based on two public
datasets:LITS (Tumor) and 3Dircadb (Vessel). Next, we use

Fig. 6. The architecture of JetsonTX2.

TABLE I
COMPARISON BETWEEN OUR METHOD AND VARIOUS METHODS ON LITS

AND 3DIRCADB DATASETS

the LTBV dataset to fine-tune the five models and compare the
segmentation effects of the five models.

1) Performance Comparison of Liver Tumor and Blood Ves-
sel Segmentation Based on Public datasets:LITS and 3Dircadb:
The performance of TransFusionNet and the other four methods
on two public datasets is shown in Table I. The experimental
results show that the IoU of TransFusionNet on the 3Dircadb
dataset can reach 0.854, and the DSC can reach 0.918, which
is 0.8% and 1.1% higher than the IoU and DSC of the baseline
method UNet. The IoU is 2.3% and 0.7% higher than UNet++
and TransUNet, respectively. However the IoU can reach 0.863
when using TransFusionNet with edge extraction module. On
the LITS dataset, that is, when performing liver tumor segmen-
tation, the IoU and DSC of TransFusionNet can reach 0.840 and
0.910. As can be seen from Table I, the VOE of TransFusionNet
on the two datasets, that is, the error rate is also far lower for
other models.
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TABLE II
COMPARISON BETWEEN OUR METHOD AND VARIOUS METHODS ON LTBV

DATASETS

Fig. 7. Ablation experimental results for different feature extraction
structures. (a) DSC on 3Dircadb dataset. (b)DSC on LITS dataset.

2) Performance Comparison of Liver Tumor and Blood Ves-
sel Segmentation Based on Private dataset:LTBV: We used five
models pretrained on LITS and 3Dircadb datasets to perform
fine-tune training on the LTBV dataset. The performance of each
model on LTBV dataset as shown in Table II. From Table II, we
can see that the IoU of TransFusionNet on the vessel dataset
reached 0.822, and the DSC can reach 0.899. This is 1.9%
and 1.8% higher than the IoU and DSC of the baseline method
SegNet, and is higher than the IoU and VOE of TransUNet. They
are 0.4% and 0.5% higher respectively. On the tumor dataset, the
IoU and DSC of TransFusionNet are as high as 0.927 and 0.961,
which shows our method can still achieve the best results after
LTBV transfer learning.

C. Ablation Study of TransFusionNet

1) Performance of Semantic and Local Spatial Feature Ex-
traction Module: We conduct ablation experiments on the Trans-
FusionNet semantic feature extraction module and local feature
extraction module, with the aim of testing the effect of the
above two feature extraction modules on the segmentation per-
formance of TransFusionNet. From Fig. 7(a) we can see that the
Transformer-based semantic feature extraction module performs
better than the SEBottleNet module on the vascular dataset of
3Dircadb. We believe that the Transformer can learn global
contextual feature representation of the CT image, especially it
encodes the image location information, which certainly helps
to enhance the segmentation of the image in global reception. On

TABLE III
ABLATION STUDY RESULTS FOR SKIP CONNECTION USED ON DIFFERENT

MODULE OF OUR METHOD

the LITS tumor dataset, as shown in Fig. 7(b), the segmentation
accuracy of the SEBottleNet-based local spatial extraction mod-
ule is higher, which is attributed to the fact that its internal CNN
and local residuals are more interested in some finer features
in the image, such as tumor edge features. From Fig. 7, we
can see that our works achieves an effective improvement in the
segmentation accuracy of liver vessels and tumors by combining
the Transformer module and SEBottleNet module.

2) Performance of Edge Extraction Model: From results in
Tables I and II, we can find that the TFNEdge module shows
the best effect in vascular segmentation task, but the outcome
in tumor segmentation task is not as good as TFN. Anyway, the
tumor segmentation effect of TFNEdge module also exceeds the
state-of-the-art model. This shows that the edge extraction mod-
ule can play a good role in the task of small target segmentation.
However, when segmenting large targets, due to the function
of the edge loss function, the network will pay more attention
to edge optimization and affect the global control of the whole
target.

3) Performance of Skip Connection: In the Encoder-
Decoder structure, the encoder learns to extract the high-
frequency image representation of the feature map, and the
decoder continuously learns feature recovery based only on the
high-frequency feature coding output from the encoder. The role
of low-frequency feature information is ignored in the process of
encoding and decoding, yet low-frequency features often have
their non-negligible role. The role of skip connection is to allow
the network to learn low-frequency features during the encoding
and decoding process. In this experiment, we use two datasets,
LITS and 3Driadb, to analyze the segmentation contribution
of skip connections on each module of TFN. According to
the characteristics of TFN, we design four comparison models.
As shown in the second column of Table III, None indicates
that all skip connections of the semantic and spatial feature
extraction modules are cancelled,CNN indicates that only skip
connections of the spatial feature extraction module are retained,
Trans indicates that only skip connections of the semantic
feature extraction module are retained, and CNN + Trans
indicates that all skip connections are retained, which is the
TFN model. Table III shows the experiment results. According
to the results in the Table III, we can find that the model retaining
the global local skip connections has a significant improvement
compared to the model with the jump links removed. This result
proves the importance of skip connections for TransFusionNet
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Fig. 8. Qualitative analysis of the 2D segmentation results of blood vessels, tumors and fusions of TransFusionNet and other comparison models
from visual perspective.

and also shows that the low frequency features of the image have
a significant impact on the segmentation results.

D. Visualizations

From the above quantitative experimental methods, our model
has the best performance in the segmentation of liver blood
vessels and liver tumors. Next, we use TransFusionNet and other
comparable models on a test case of the LTBV dataset to segment
liver tumors and blood vessels and then visualize them. The first
row of Fig. 8 is the segmentation result of Vessel, the second
row is the segmentation result of Tumor, and the third row is the
result of fusing the first two rows of segmentation results in the
same coordinate system.

From the perspective of visual analysis, SegNet and UNet are
not accurate in segmenting the details of blood vessels. Although
UNet++ can identify some details of blood vessels, the error
rate is too high. TransFusionNet almost perfectly segmented the
details of blood vessels, which is more accurate than TransUNet.
This is attributed to SEBottleNet’s extraction of local receptive
field information and the importance of different channels. In
tumor segmentation, UNet++ has a great segmentation result
for the edge of the tumor, while SegNet and UNet perform
poorly in this respect. All comparison models have some wrong
tumor segmentation, and TransFusionNet not only avoids these
wrong segmentation but also can segment the edge and contour
of the tumor accurately. We believe that after TransFusionNet
extracts global and local information, the multi-scale feature
fusion decoder almost perfectly restores the feature of the image,
so that the segmentation accuracy is significantly improved, and
the error rate is low.

In summary, the above comparison models are not accurate in
segmenting tumors and blood vessels. They are easy to misclas-
sify some areas that are not tumors, and they are not sensitive
to the recognition of some fine blood vessels areas, resulting in
incomplete blood vessel segmentation results. TransFusionNet

TABLE IV
COMPUTATIONAL PERFORMANCE COMPARISON OF ORIGINAL AND

QUANTIZED MODELS

can accurately segment the liver tumor regardless of its integrity
or vascular continuity.

E. Computational Performance Analysis

In this experiment, we analyzed the computational perfor-
mance of the model on node with 3090 and JetsonTX2 device.
We selected the same patient sample containing 132 CT slices
to run 5 times inference tests, and obtain the mean IoU and
latency of the segmentation. We then used fvcore to calculate
the FLOP of TransFusionNet, which is about 54 GFLOP. Based
on the latency and FLOP, we calculated the peak performance
of both models on different devices. Table IV shows the detailed
results of our experiments.

According to the results in Table IV, we found that com-
pared to the original model, the quantized model latency is
reduced by 0.08 s on node with 3090 and 0.54 s on Jet-
sonTX2. Peak computational performance is improved by
0.191 TFLOPs on node with 3090 and 1.302 GFLOPs on Jet-
sonTX2. The computational efficiency on JetsonTX2 reached
21%. Furthermore, mean IoU is reduced by 0.03 which is
negligible. Interestingly, we found that the improvement in
inference performance of the quantized model on the Jet-
sonTX2 device is not very significant. Further analysis reveals
that the access memory of our model in the device occupies
about 5 GB, which is close to the storage limit of JetsonTX2
and thus hinders the inference performance improvement of
JetsonTX2.
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Fig. 9. Visual comparison of reconstruction results. (a) Reconstruc-
tion result using automatic reconstruction algorithm under JetsonTX2
system. (b) Reconstruction results using manual annotations.

F. Visual Analysis of 3D Reconstruction of Segmentation
Results

To validate the effectiveness of TransFusionNet, we con-
ducted a 3D visualization study of the segmentation model.
Following the methods in Section II-H, we selected the test set
of liver cancer patient samples applying the lightweight model
on JetsonTX2 to make inference predictions and save the results.
Based on the predicted results, we used 3DSlicer to display
their 3D reconstructions. Meanwhile, we invited physicians to
manually annotate the test cases and construct ground-truth
3D reconstruction results. Fig. 9 shows a comparison between
the reconstruction results under embedded microprocessor and
manual annotations of a typical patient. Except for some noise
and loss of vessel details, the reconstruction results were very
close to the actual annotation results. However, a detailed manual
annotation requires a lot of time and effort, which significantly
reflect the efficiency and accuracy of our proposed algorithm.

IV. CONCLUSION

In this work, we proposed TransFusionNet which can effec-
tively extract the semantic and spatial features of CT images
and achieve precise segmentation. Furthermore, we proposed
intelligent quantization scheme and implement the model on
JetsonTX2. The IoU reached 0.854 in the vessel segmentation
and 0.927 in the liver tumor segmentation. Compared with
the state-of-the-art segmentation methods, TransFusionNet has
an accuracy improvement of 0.01–0.02. Meanwhile, model in-
ference achieved the peak performance of 132GFLOPs under
JetsonTX2. Our experiment is used for the segmentation of
liver tumors and blood vessels, but TransFusionNet can also be
applied to the segmentation of other tissues. The unprecedented
accuracy and efficiency of TransFusionNet, as realized in this
work by combining multiple feature extraction methods and
implement on JetsonTX2, Brings a new idea to the development
of future smart medical devices.

Although we have completed the segmentation of liver tumors
and blood vessels under JetsonTX2, the accuracy and speed of
the of inference still needs to be further improved. Due to the
numerous and small branches of intrahepatic vessels, it is diffi-
cult for deep learning algorithm to perceive the characteristics of
intrahepatic vessels. At the same time, there is a certain accuracy
gap between the quantized model and the TranfusionNet which
may lead loss of the key tissue feature. In our next work, we will

investigate the model quantification method combining numeri-
cal analysis and reinforcement learning to improve the inference
speed of the model with guaranteed accuracy. In addition, we
will investigate unsupervised or semi-supervised segmentation
based algorithms to reduce the workload of data annotation.
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