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A B S T R A C T   

Predicting drug-target interactions (DTIs) is essential for both drug discovery and drug repositioning. Recently, 
deep learning methods have achieved relatively significant performance in predicting DTIs. Generally, it needs a 
large amount of approved data of DTIs to train the model, which is actually tedious to obtain. In this work, we 
propose DeepFusion, a deep learning based multi-scale feature fusion method for predicting DTIs. To be specific, 
we generate global structural similarity feature based on similarity theory, convolutional neural network and 
generate local chemical sub-structure semantic feature using transformer network respectively for both drug and 
protein. Data experiments are conducted on four sub-datasets of BIOSNAP, which are 100%, 70%, 50% and 30% 
of BIOSNAP dataset. Particularly, using 70% sub-dataset, DeepFusion achieves ROC-AUC and PR-AUC by 0.877 
and 0.888, which is close to the performance of some baseline methods trained by the whole dataset. In case 
study, DeepFusion achieves promising prediction results on predicting potential DTIs in case study.   

1. Introduction 

Prediction of drug-target protein interactions (DTIs) is critical in the 
field of drug discovery and drug repositioning [1]. It has relied heavily 
on hundreds of currently known drug targets to detect drugs [2]. 
Although existing bioassay technologies can be used for DTIs detection, 
large-scale experiments still have many limitations. In addition, the cost 
of the experiment and scarcity of public drug repositioning analysis data 
made it necessary to develop suitable computational tools to accurately 
detecting DTIs [3]. Plenty of methods have been developed for pre-
dicting DTIs, such as ligand-based methods, docking methods and 
feature learning methods. Most ligand-based methods are lying on the 
basis of quantitative structure–activity relationship (QSAR), which as-
sumes molecules with similar structure have similar biological activities 
[4]. The highlight of ligand-based methods is characterized by molec-
ular similarity of drug-target to predict interactions, which is inaccurate 
and not generalizable. These problems can be avoided to some extent by 
building multi-target and fragment-based QSAR models [5–7]. Docking 
is one of the most commonly used methods in the field of drug-target 

interaction prediction, which models in crystal structure of target to 
screen small molecules [8]. The DTIs predicted by docking methods are 
relatively accurate, however most methods to obtain 3D structural in-
formation on target such as X-ray crystallography are rather time- 
consuming and expensive [9]. 

Feature learning methods can map drug and target into numerical 
descriptors, combined with machine learning or deep learning methods 
such as random forest (RF) [10], support vector machine (SVM) [11] 
and convolutional neural network (CNN) [12–14] to learn potential 
relationship of drug-target pairs, which regards the prediction of DTIs as 
a binary classification problem. Recently, a number of deep learning 
models [15–17] for prediction of DTIs have emerged. 

All of them have improved accuracy to a greater or lesser extent, but 
there are still several common unresolved problems as follows:  

• Scarcity of known drug-target interaction leading to limited 
application scenarios for models. Recently, many transformer and 
graph-based methods have emerged. Graph-DTA [18] uses multiple 
GNNs to capture graph information of drug and CNN to capture 
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sequence information of protein. Transformer-CPI [19] performs DTI 
prediction by feature extraction of drug and protein sequences. All of 
them require large amounts of DTIs data to train the model. How-
ever, the majority of DTIs data is unlabeled and only a small pro-
portion of known DTIs data is available. In addition, when we try to 
implement some DTI models on specific cases, such as diabetes, the 
size of available training data is even smaller.  

• Limited to encoding molecular feature and ignoring how to 
model interaction feature. Most current deep learning methods 
[20,21] only focus on encoding molecule feature through extracted 
molecular feature to predict interactions, which in fact extracts 
redundant feature that interfere and disrupt prediction performance. 
Moltrans [22] extracts drug and protein sub-structural feature to 
avoid the aforementioned problems like redundant feature and etc. 
However, the dimensionality of final drug-protein interaction feature 
is too large and only considered from single perspective, thus it is not 
comprehensive enough to accurately predict small samples of DTIs 
data. 

In this work, we tackled two challenging problems by proposing a 
deep learning based multi-scale interaction feature fusion method for 
predicting DTIs. The main contributions of this paper are as follows: (1) 
In previous prediction of DTIs, the structure of a drug or protein is 
embedded using only its own information, without considering the 
global feature with other molecules. And this paper proposes a method 
to obtain more information in limited data to make accurate predictions. 
Tanimoto coefficient, Levenshtein distance and convolutional neural 
network are applied to generate drug and protein global structural 
similarity features. (2) We not only consider the global feature of 
molecule, but also note that drug-target interaction occurs on molecular 
sub-structures. In our work, we use transformer to extract the sub- 
structure feature of molecules. (3) Two feature extraction channels are 
used to obtain global feature based interaction and local sub-structure 
feature based interaction, the two features are fused for the final 
prediction. 

2. Materials and methods 

2.1. Problem definition 

We take DTIs prediction problem here as a classification task by 
using Simplified Molecular Input Line Entry System (SMILES) for drug 
and protein sequence as input to predict DTIs. Drug and protein datasets 
are denoted by ΦD and ΦP respectively. Inputs to our model are indi-
vidual drug and protein denoted by ΦD

i and ΦP
j respectively as well. In 

order to get the structural similarity feature of ΦD
i , all remaining drugs in 

ΦD are the benchmark set for current drug. And the same is true for 
proteins. The benchmark set is represented by ΩD and ΩP for drug and 
protein respectively, where individual drug and protein in the bench-
mark datasets are represented by ΩD

i and ΩP
j . 

2.2. The DeepFusion method 

DeepFusion consists of global structural similarity feature extraction 
channel (Sim-Channel), locals ub-structure feature extraction channel 
(Sub-Channel) and interaction predicting module (IP-Module). The 
Overview of the topological structure of DeepFusion is shown in Fig. 1. 
Sim-Channel operates on pre-generated drug/protein structural simi-
larity matrix to obtain drug/protein structural similarity feature (DSSF/ 
PSSF) by using similarity theory and convolutional neural network. Sub- 
Channel uses Frequent Consecutive Sub-sequence (FCS) [22] mining 
that is adaptable to extract high-quality fifite-sized sub-structure for 
both protein and drug. The contextual embedding of sub-structure was 
subsequently enhanced by using transformer [23] to learn sub-structure 
information and chemical semantic information of input sequence. 
Dimensionality reduction is performed using CNNs in the last layer of 
transformer network to avoid dimensionality explosion. Interaction 
predicting module (IP-Module) fuses these two parts of features, 
generating a final encoded interaction feature for more accurate pre-
diction to obtain the probability score of predicted DTI. 

Fig. 1. The Overview of DeepFusion.  
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2.2.1. Extraction of global structural similarity feature 
In order to structurally relate each drug to all other drugs in same 

dataset, we need to calculate structural similarity of each drug based on 
structural information of all other drugs, which will generate a drug 
structural similarity matrix. Similarly, for proteins, a protein structure 
similarity matrix is generated. Sim-Channel is first implemented with 
the generated drug and protein structural similarity matrices. The in-
dividual drug and protein input to Sim-Channel are then matched on 
drug and protein structural similarity matrices respectively. DSSF and 
PSSF of input drug and protein are then obtained. For DSSF, it contains 
calculated structural similarity scores of input drug to all drugs in 
benchmark dataset. DSSF can greatly capture structural associations of 
individual drug with all drugs in benchmark dataset, enabling more 
accurate representation of input individual drug.  

• Generation of drug structural similarity matrix (matrix MD) 

DeepFusion uses SMILES of drug as input, while Sim-Channel first 
uses Rdkit to convert drug SMILES to Morgan Fingerprint with radius of 
2 in preparation for the subsequent calculation of drug structural simi-
larity. Morgan Fingerprint represent drug as a one-hot vector, indicating 
the presence or absence of different sub-structures or pharmacological 
features at each location. We use Tanimoto coefficient (TC) to quantify 
similarity extent between two Morgan Fingerprint. The similarity be-
tween Morgan Fingerprint A and Morgan Fingerprint B is calculated as 
follows [24]: 

Sim(MFA,MFB) =
MFA ∩MFB

MFA ∪MFB
(1)  

where |MFA ∩ MFB| is the number of features that Morgan Fingerprint A 
and Morgan Fingerprint B have in common and |MFA ∪ MFB| is the 
number of all features of Morgan fingerprint A and Morgan fingerprint 
B. Sim(MFA,MFB) takes on a value in the range 0 to 1. When Sim(MFA,

MFB) = 1, it means that two drugs are perfectly similar. When Sim(MFA,

MFB) = 0, it means that the two drugs are approximately completely 
unrelated. 

Two-by-two structural similarity calculation are cyclically per-
formed for drug ΦD

i in dataset ΦD and drug ΩD in benchmark set ΩD
j to 

generate a drug structural similarity matrix MD. 

MD =

⎛

⎜
⎜
⎜
⎝

Sim
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1

)
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(2)  

where the i-th row in MD represents structural similarity feature vector 

VDSSF
i of the i-th drug ΦD

i in input dataset. Sim
(

MFΦD
i
,MFΩD

J

)
is similarity 

score of the i-th drug in input data set to the j-th drug in benchmark 
dataset. Drug structural similarity matrix MD establishes a structural link 
between input individual drug and all drugs in benchmark set.  

• Generation of protein structural similarity matrix (matrix MP) 

We use Levenshtein distance [25] to calculate protein sequences 
structural similarity. Levenshtein distance between two protein se-
quences calculates the minimum number of substitutions required to 
convert one sequence to another by means of insertion, deletion and 
replacement character operations. The similarity of two protein se-
quences is measured by the size of the Levenshtein distance, with larger 
values indicating that two protein sequences are more similar, and 
conversely smaller values indicating that two protein sequences are less 
similar. Levenshtein distance allows for comparison of sequences of 
different lengths, so it can be used well for similarity comparisons of 
structurally and functionally different protein sequences. 

Suppose there is two protein sequences: 
P = {MVKFNSSRKSGKSKKTIRK....RIVYIGEHKNQKVN} of length 

|P|, 
Q = {MTELKAKGPRAPHVAGGPP....LPKILAGMVKPLLFHKK} of 

length |Q|. 
To calculate Levenshtein distance of P and Q, first create a matrix L ∈

R(|P|+1 )×(|Q|+1 ) and then perform the following calculation: 

LP,Q(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

max(j, j)

min

⎧
⎪⎪⎨

⎪⎪⎩

LP,Q(i − 1, j) + 1

LP,Q(i, j − 1) + 1

LP,Q(i − 1, j − 1) + 1(Pi∕=Qj)

ifmin(i, j) = 0
otherwise (3) 

For LP,Q(i, j), if i = 0andj = 0, then LP,Q[0, 0 = 0]. If i = 0, then 
LP,Q[0, j] = j. If j = 0, then LP,Q[i,0] = j. If i ≥ 1andj ≥ 1, then LP,Q[i, j] =
min

{
LP,Q[i − 1, j] +1, LP,Q[i, j − 1] +1, LP,Q[i − 1, j − 1] +f(i, j)

}
. When 

Pi ∕= Qj, then f(i, j) = 1, otherwise f(i, j) = 0. LP,Q[|P|, |Q| ] is the Lev-
enshtein distance between protein sequence P and protein sequence Q. 

With Levenshtein distance of P and Q, the similarity between them 
can be calculated using the following formula: 

SimP,Q = 1 −
LP,Q(|P|, |Q| )
max(|P|, |Q| )

(4) 

As with the method for generating drug structure similarity matrix, 
the following is the generated protein structure similarity matrix: 

MP =
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(5)  

where the i-th row in MP represents structural similarity feature vector 

VPSSF
i for the i-th protein in inputting protein dataset. Sim

(
MFΦP

i
,MFΩP

j

)

is the similarity score between the i-th protein in input dataset ΦP and 
the j-th protein in benchmark dataset ΩP. 

Fig. 2. Generation of drug structure similarity matrix.  
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• Generation of drug structural similarity vector (VDSSF)and protein 
structural similarity vector (VPSSF) 

Using the method introduced above, a drug structure similarity 
matrix and a protein structure similarity matrix can be generated based 
on the drugs and proteins in dataset respectively. Our method can 
implement generated drug (protein) structure similarity matrix when 
inputting individual drug SMILES /protein sequence and looks up 
VDSSF/VPSSF of inputting drug / protein in the matrix, as shown in Fig. 2. 
Similarity calculations are performed between drugs fed into Deep-
Fusion and those in benchmark set to generate a drug structure simi-
larity matrix. When an individual drug is fed into DeepFusion, the 
corresponding DSSF can be extracted in drug structure similarity matrix 
based only on the DrugBank ID of the individual drug. The generated 
VDSSF and VPSSF are then fed into convolutional neural network. 

The dimensionality of the similarity features obtained at this point is 
large and some of the similarity information is redundant. If these fea-
tures are used directly for feature fusion, this may result in inaccurate 
prediction. Therefore, we use CNN to extract feature from obtained drug 
and protein similarity feature with reduced dimensionality. Generating 
similarity-based interaction function Fsim: 

Isim = Fsim
(
CNN

(
VDSSF),CNN

(
VPSSF) ) (6)  

where CNN() is three1D convolutional neural network layers that ex-
tracts 1D feature vector. By Fsim, we denote the aggregation function for 
calculating similarity-based interaction, where we choose dot product as 
the aggregation function. Dimensionally reduced VDSSF and VPSSF 

represent a drug and protein respectively and dot product effectively 
maintains the structural integrity of drug and protein for the calculation 
of DTI at molecular level. Finally, we input the gained Isim into IP- 
Module. 

2.2.2. Extraction of local sub-structure feature 
In order to get feature of each drug based on structural information of 

other molecules, we use structural similarity feature of molecules This 
can be used to a great extent to capture unknown DTIs using known DTIs 
of other molecules. However, the occurrence of DTIs is influenced at the 
molecular substructure level, where interactions between drugs and 
protein sub-structures directly determine whether or not DTIs will 
occur. For this reason, we feed drug SMILES and protein sequence to the 
Sub-Channel of DeepFusion to extract drug and protein sub-structure 
information to better capture sub-structure interaction feature. 

Frequent consecutive sub-sequence (FCS) mining algorithm [22] is 
used to extract sub-structure information from input molecules. After 
obtaining decomposed molecular sub-structure, we use transformer to 
enrich chemical connections of the sub-structure. The previous method 
[22] is used to predict DTIs after sub-structure information had been 
extracted using transformer. The generated interaction feature has a 
large dimensionality and are prone to the curse of dimensionality, which 
does not effectively represent interactions. 

Let the drug SMILES to be D, and protein sequence be P. After the two 
sequences have been fed into sub-structure feature extraction channel, 
the decomposed sub-structure matrix MD

dec ∈ Rm×s and MP
dec ∈ Rn×t can 

be updated by FCS algorithm, in which m/n is actual size of drug/pro-
tein sub-structure and s/t is maximum length of drug/protein sub- 
structure. The calculation formula is as follows: 

MD
dec = FCS(D),MP

dec = FCS(P) (7)  

where column MD
deci 

and MP
decj 

represents sub-structure between the i-th 
drug and the j-th protein. The presence or absence of sub-structure is 
indicated by one-hot vector. 

Next, we need to calculate the content embedding and position 
embedding of sub-structure, and sum these two embeddings to obtain 
the final embeddings ED and EP. The final embedding is then fed into 

transformer to better learn the sub-structural and chemical semantic 
information of input sequence. The specific formula is as follows: 

ED = TransformerDrug
(
WD

contM
D
deci +WD

posH
D
i

)
(8)  

EP = TransformerProtein
(
WD

contM
D
decj +WD

posH
P
j

)
(9)  

where Transformer() is a stacked 12-layer encoder based on self- 
attentive mechanism [23]. WD

cont ∈ Rl×m and WP
cont ∈ Rl×n are learnable 

dictionary lookup matrices used to generate content embeddings and 
position embeddings are generated using a lookup dictionary WD

pos ∈

Rl×s and WP
pos ∈ Rl×t. And l is the size of the latent embedding of each 

sub-structure. HD
i ∈ Rs and HP

j ∈ Rt are one-hot vectors with value 1 at the 
i-th and j-th positions. 

After obtaining ED and EP, we use a layer of Conv1D to dimensionally 
reduce them, again to prevent dimensionality curse. And generating sub- 
structure-based interaction by using function Fsub: 

Isub = Fsub
(
CNN

(
ED),CNN

(
EP) ) (10)  

where CNN() is a 1D convolutional neural network layer. Whereas, Fsub 

uses dot product to calculate sub-structure-based interaction. ED and EP 

are embedding vectors representing all sub-structures of drug and pro-
tein respectively. Dot product is selected to calculate the interactions 
between each sub-structure separatel. 

2.2.3. Interaction predicting module (IP-Module) 
In DeepFusion, it extracts two features of interaction through Sim- 

Channel and Sub-Channel. After flatting Isim and Isub, we use function F 
on them to calculate interaction I by 

I = F(Flatten(Isim),Flatten(Isub) ) (11)  

where function F uses concatenation for aggregation. Since Isim and Isub 
are interactions on the same level, the use of concatenation maintains 
the integrity of its own features. 

Predicting network is made up of linear layer and ReLu function. The 
weights and bias parameters of whole network are optimized by binary 
classification loss. Interaction fusion feature I is fed to predicting 
network, which finally outputs a probability score P on the interaction 
by: 

P = Sigmoid(WI+ b) (12)  

where W and b is weight matrix and bias vector of the linear layer. 

3. Results and discussion 

It is used Rdkit to generate structural similarity matrices for drug and 
protein, Subword-nmt to construct sub-structure corpus of sequences 
and PyTorch to implement our proposed model. Some other necessary 
programming environments include Numpy, Pandas, Sklearn, Collec-
tions, Math, etc. Adam optimizer is applied with learning rate of 1e-4 
and we set batch size to 64, epochs to 100 and dropout rate to 0.5. 
For experimental equipment, we use two Intel(R) Xeon(R) Gold 6226R 
2.90 GHz CPUs and two NVIDIA Tesla V100 GPUs servers for our 
experiment. 

3.1. Experiment design 

Five data experiments are designed and conducted with the 
following objectives:  

(1) Evaluate the performance of DeepFusion in predicting DTI on 
different dataset sizes and negative ratios in data experiment 1. 
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(2) Compare the robustness of DeepFusion with other state-of-the-art 
methods on different dataset sizes in data experiment 2. 

(3) Validate the necessity of using CNN for feature extraction be-
tween feature extraction channel and IP-Module in data experi-
ment 3. 

(4) Analyze the contribution of structural similarity feature extrac-
tion channel and sub-structure feature extraction channel to 
DeepFusion in data experiment 4.  

(5) Verify the practical performance by molecular docking in case 
study. 

3.2. Experimental setup 

3.2.1. Dataset 
We select here the MINER DTI dataset from BIOSNAP collection [26] 

for our data experiments. It contains 4,510 drugs and 2,181 proteins, 
and also includes 13,741 drug-target interaction pairs from DrugBank 
[27]. Since BIOSNAP contains only positive DTI pairs, we expand 
negative samples by the number of positive samples in order to balance 
data. In this work, negative samples are defined as drug-target pair has 
no interaction or is unknown. We also introduce DAVIS dataset [28] as a 
highly unbalanced dataset to evaluate the robustness of our model, and 
the data details are presented in Table 1. For benchmark set of Drug/ 
protein, we remove the duplicate drug and protein data from BIOSNAP 
and DAVIS separately to obtain baseline drug dataset and baseline 
protein dataset with no duplicate data. We then use them separately to 
generate drug/protein structural similarity matrix. For subsequent ex-
periments, we randomly split BIOSNAP dataset into four sub-datasets 
according to 100%, 70%, 50% and 30% of the dataset size, as shown 
in Table 1. Also, we select 70% of the dataset to be used as training set, 
10% as validation set and 20% as test set. 

3.2.2. Evaluation metrics 
We evaluate the performance of model using metrics that are 

commonly used in classification experiments, including: ROC-AUC 
(Area under the receiver operating characteristic curve), PR-AUC 
(Area under the precision-recall curve), accuracy and F1 score. The 
smoother ROC-AUC and PR-AUC curves and larger AUC values indicate 
better model performance, and they also ignore the effect of threshold 
selection, which in practice is often determined by a priori probabilities 
or artificially. 

3.3. Baselines 

Morgan-CNN [15] inputs Morgan Fingerprint of drug into a multi- 
layer perceptron. Protein sequences are decomposed into individ-
ual characters and represented in embeddings, which are then fed 
into a multi-layer 1D CNN. 
MPNN-CNN uses message passing neural network [29] to extract 
drug feature. It can extract embedding vector to molecular graph- 
level by embedding vector for each atom and edge. A multi-layer 
perceptron decoder is used to predict DTIs. 
DeepConv-DTI [16] takes ECFP4 of drug as input and uses a fully 
connected layer to extract drug features. CNN and global maximum 

pooling layers are used to extract local models of different lengths in 
protein sequence. 
GraphDTA [18] applies GNN and CNN to drug and protein repre-
sentation, respectively. In our experiments, we added sigmoid acti-
vation function to the last layer for DTI prediction. 
TransformerCPI [19] is based on transformer architecture, a model 
that generates atomic representations and protein sequence repre-
sentations from CNN and GCN for drug and protein sequences, 
respectively. Interaction feature are obtained through transformer’s 
decoder and interaction probabilities are output using a linear layer. 
Moltrans [22] uses Frequent Consecutive Sub-sequence mining to 
extract sub-structures of SMILES and protein sequence, and trans-
former for enhanced representation of sub-structures. The model is 
by far the most advanced for the DTI prediction task and we use the 
hyper-parameters in the original article for experiment. 

3.4. Data experiment 1 

We evaluate performance of DeepFusion on four sub-datasets of 
BIOSNAP. It is obtained from Table 2 that DeepFusion has the best 
overall performance on all sub-datasets. Specifically, it is the highest in 
all evaluation metrics on 100%, 70% and 50% sub-dataset. On 70% sub- 
dataset, it achieves ROC-AUC and PR-AUC are 0.877 and 0.888 
respectively, which is close to the performance of some baseline 
methods. On 30% sub-dataset, DeepFusion outperform the superior 
baseline method Moltrans by 1.9% and 3.9%, and outperform 

Table 1 
Description of drugs, proteins and positive and negative samples for the four sub- 
datasets of BIOSNAP and DAVIS dataset.  

Dataset Drugs Proteins Positive Samples Negative samples 

100% 4,510 2,181 13,741 13,742 
70% 4,404 2,173 9,618 9,618 
50% 4,140 2,154 6,864 6,865 
30% 3,502 2,030 4,121 4,121 
DAVIS 68 379 2,666 9,597  

Table 2 
DeepFusion achieved the best prediction performance on all datasets (average of 
five experiments).  

Dataset Method ROC-AUC PR-AUC Accuracy F1 

100% Morgan-CNN 
MPNN-CNN 
DeepConv-DTI 
GraphDTA 
TransformerCPI 
MolTrans 
DeepFusion 

0.876 
0.873 
0.876 
0.890 
0.892 
0.882 
0.901 

0.885 
0.886 
0.890 
0.898 
0.903 
0.894 
0.910 

0.800 
0.798 
0.803 
0.811 
0.808 
0.795 
0.830 

0.795 
0.795 
0.796 
0.802 
0.802 
0.802 
0.827  

70% Morgan-CNN 
MPNN-CNN 
DeepConv-DTI 
GraphDTA 
TransformerCPI 
MolTrans 
DeepFusion 

0.854 
0.853 
0.856 
0.869 
0.874 
0.872 
0.877 

0.861 
0.864 
0.873 
0.884 
0.883 
0.876 
0.888 

0.781 
0.783 
0.782 
0.781 
0.790 
0.795 
0.796 

0.792 
0.777 
0.784 
0.794 
0.797 
0.800 
0.802  

50% Morgan-CNN 
MPNN-CNN 
DeepConv-DTI 
GraphDTA 
TransformerCPI 
MolTrans 
DeepFusion 

0.822 
0.841 
0.815 
0.840 
0.846 
0.848 
0.859 

0.838 
0.858 
0.837 
0.862 
0.850 
0.835 
0.874 

0.694 
0.755 
0.694 
0.748 
0.768 
0.766 
0.771 

0.743 
0.758 
0.734 
0.763 
0.755 
0.770 
0.776  

30% Morgan-CNN 
MPNN-CNN 
DeepConv-DTI 
GraphDTA 
TransformerCPI 
MolTrans 
DeepFusion 

0.778 
0.819 
0.777 
0.841 
0.826 
0.817 
0.836 

0.812 
0.850 
0.812 
0.859 
0.857 
0.831 
0.870 

0.698 
0.729 
0.718 
0.753 
0.729 
0.732 
0.765 

0.726 
0.695 
0.702 
0.733 
0.755 
0.737 
0.760  

DAVIS Morgan-CNN 
MPNN-CNN 
DeepConv-DTI 
GraphDTA 
TransformerCPI 
MolTrans 
DeepFusion 

0.884 
0.767 
0.880 
0.874 
0.874 
0.907 
0.911 

0.293 
0.167 
0.340 
0.289 
0.277 
0.375 
0.402 

0.794 
0.771 
0.858 
0.677 
0.745 
0.849 
0.837 

0.291 
0.220 
0.337 
0.214 
0.254 
0.367 
0.388  
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DeepConv-DTI by 5.9% and 5.8% for ROC-AUC and PR-AUC. On DAVIS 
dataset, a highly unbalanced positive and negative sample distribution, 
DeepFusion achieves the highest performance in all metrics except ac-
curacy, indicating that our model is equally good at predicting on un-
balanced datasets with very good robustness. 

It is worth noticing that although MPNN-CNN performs poorly on 
large-scale dataset, it learns well on small-scale dataset. We attribute 
this to the fact that MPNN exploits information at multiple levels such as 
atomic properties and molecular structure. 

3.5. Data experiment 2 

Four sub-datasets of BIOSNAP are used in this experiment to evaluate 
the robustness of DeepFusion and baseline methods. These four sub- 
datasets have a relatively large difference in size and model settings 
are not biased when making prediction. We plot ROC and PR curves by 
the actual labels of DTIs and predicted values of each model, as shown in 
Fig. 3. During the reduction of the dataset size, ROC curve and PR curve 
of DeepFusion are very smooth and both ROC-AUC and PR-AUC are the 

Fig. 3. The ROC-AUC of DeepFusion performs best on all sub-datasets.  
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best. 
In contrast, the other methods show larger fluctuations in both ROC 

and PR curve and huge decreases in ROC-AUC and PR-AUC. Thus 
DeepFusion has the best robustness and the best predictive performance 
compared to the baseline method. In practice, when predicting inter-
action of a certain target protein with drugs, the data scale is not too 
large and DeepFusion allows for better prediction. 

3.6. Data experiment 3 

To validate the necessity of using CNN between feature extraction 
channel and IP-Module, we need to perform experiments on models with 
and without CNN. We conduct experiments on four sub-datasets and 
DAVIS. The results are shown in Fig. 4. It can be seen that the model 
using CNN after feature extraction channel performs better than the 
model without CNN. During the period of conducting experiments, we 
observed that dimensionality of features extracted through Sim-channel 
and Sub-channel are very large. Thus, implementation of CNN at this 
point can effectively remove redundant information and obtain feature 
with stronger relevance, which improves the final prediction 
performance. 

3.7. Data experiment 4 

There are Sim-Channel and Sub-Channel to extract features of drug 
and protein. To compare feature extraction capabilities of the two 
channels, we use one of the channels in combination with interaction 
feature fusion module for DTIs prediction respectively, and the results 
obtained are shown in Fig. 5. 

In terms of evaluation metrics, the prediction performance using 
Sub-Channel alone is better than using Sim-Channel alone. However, as 
the size of the dataset decreases, prediction performance drops 
dramatically while Sim-channel keeps a high stability. However, when 
the dataset size was reduced from 70% to 30%, ROC-AUC of sub- 

Fig. 4. Model with CNN perform better than without on all datasets.  

Fig. 5. Sub-Channel prediction performs better and Sim-Channel prediction performance is less affected by dataset size.  

Table 3 
DeepFusion makes new prediction for 30% sub-dataset (in no particular order).  

Protein ID Drug ID Actual Label Predictive Label Evidences 

P78527 DB00201 1 1 [30] 
P08684 DB00295 1 1 [31–33] 
P10635 DB00334 1 1 [34] 
Q9UBM7 DB00157 1 1 [35,36] 
P48775 DB00150 1 1 [37] 
P10632 DB00897 1 1 [38] 
P47870 DB00898 1 1 [39,40] 
P10632 DB00688 1 1 [41,42] 
O95168 DB00157 1 1 [35] 
O15067 DB00142 1 1 [35] 
P08684 DB00540 1 1 [43,44] 
P08684 DB00688 1 1 [40,42] 
P02679 DB00157 0 1 Unknow 
P13498 DB00786 0 1 Unknow  
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structure channel decreased by 7.3% and PR-AUC by 8.8%. However, 
the reduction in dataset size has very little impact on Sim-Channel, with 
ROC-AUC dropping by only 3.2% and PR-AUC dropping by 1.5% when 
the dataset size is reduced from 70% to 30%. This is attributed to the fact 
that Sim-Channel can use features of other molecules to determine their 
own features, thus extracting more features on limited data. DeepFusion 
has the advantage of strong predictive power in Sub-Channel and in-
herits the advantage of strong feature extraction in Sim-Channel, 
resulting in better prediction performance with less impact from data-
set size reduction. 

3.8. Case study 

It is verified that DeepFusion has a high confidence level, which is 
useful for practical applications, so we do prediction experiments on 
30% sub-dataset of BIOSNAP. Twelve prediction scores of the top 
fourteen DTI pairs are confirmed by previous literature or included in 
DrugBank, and two are newly predicted, as shown in Table 3 (in no 
particular order, as the top 14 prediction scores are all 1). 

The prediction score is the unthresholded probability score predicted 
by DeepFusion. If the value is 1, it indicates that DeepFusion believes 
that the drug-protein pair has interaction. Thus, P02679 and DB00157, 
P13498 and DB00786 are likely to be drug-protein pairs with in-
teractions that have not yet been identified. We use PDB entries for 
molecular docking on Autodock Vina [45] and visualise the hydrogen 
bonds formed by some of these amino acids and drug molecules. Mo-
lecular docking and hydrogen bonding coloring between 1DUG (PDB 
entry of P02679) and DB00157, as shown in Fig. 6(a). Molecular 
docking and hydrogen bonding coloring between 1WLP (PDB entry of 
P13498) and DB00786, as shown in Fig. 6(b). 

4. Conclusions 

In this paper, we present DeepFusion framework, which can effec-
tively extract molecular structural similarity feature and sub-structure 
feature, which are fed into interaction feature fusion module to 
encode interaction feature. We conduct experiments using real-world 
dataset and compare them with four currently more advanced 
methods. The results show that DeepFusion has excellent predictive 
performance on large-scale, small-scale and unbalanced datasets. We 
use DeepFusion to predict two new DTI pairs in BIOSNAP sub-dataset 
and validate them through molecular docking method, demonstrating 
that our prediction is of some practical relevance and application. 
DeepFusion also has some limitations, in this paper the similarities of 
drugs and proteins are calculated based on 2D and 1D structural infor-
mation, respectively, which may lose some information. In the future we 
will collect 3D structural information of drugs and proteins and use it to 
construct 3D model. 
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