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Abstract

Multi-drug combinations for the treatment of complex diseases are gradually becoming an important treatment, and this type of
treatment can take advantage of the synergistic effects among drugs. However, drug–drug interactions (DDIs) are not just all beneficial.
Accurate and rapid identifications of the DDIs are essential to enhance the effectiveness of combination therapy and avoid unintended
side effects. Traditional DDIs prediction methods use only drug sequence information or drug graph information, which ignores
information about the position of atoms and edges in the spatial structure. In this paper, we propose Molormer, a method based on
a lightweight attention mechanism for DDIs prediction. Molormer takes the two-dimension (2D) structures of drugs as input and
encodes the molecular graph with spatial information. Besides, Molormer uses lightweight-based attention mechanism and self-
attention distilling to process spatially the encoded molecular graph, which not only retains the multi-headed attention mechanism
but also reduces the computational and storage costs. Finally, we use the Siamese network architecture to serve as the architecture
of Molormer, which can make full use of the limited data to train the model for better performance and also limit the differences to
some extent between networks dealing with drug features. Experiments show that our proposed method outperforms state-of-the-
art methods in Accuracy, Precision, Recall and F1 on multi-label DDIs dataset. In the case study section, we used Molormer to make
predictions of new interactions for the drugs Aliskiren, Selexipag and Vorapaxar and validated parts of the predictions. Code and
models are available at https://github.com/IsXudongZhang/Molormer.
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Introduction
Multi-drug combinations for the treatment of complex
diseases are becoming increasingly popular today, and
this type of treatment can take advantage of the synergis-
tic effects between drugs [1]. However, drug–drug inter-
actions (DDIs) are not just all beneficial, and when two
drugs enter the body at the same time, some unknown
side effects or even harmful toxicity may occur [2]. There-
fore, accurate and rapid identification of the interac-
tions between a large number of drug pairs is essential
to enhance the effectiveness of combination therapy

and avoid unintended side effects. Methods for identi-
fying DDIs in the wet lab are very expensive and time-
consuming. In recent years, a large number of compu-
tationally based methods for predicting DDIs have been
proposed.

Computation-based approaches can be broadly clas-
sified into two categories: text mining-based and
feature learning-based approaches. Text mining-based
approaches [3, 4] usually use scientific literature, medical
reports and electronic medical records as data sources
to identify annotated DDIs by applying natural language
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processing (NLP) techniques to automate a large corpus
of relevant data for processing text [5]. This method
identifies DDIs with high accuracy and can be used
to build a DDI-related database, but it cannot identify
unannotated DDIs [6]. However, there is still a large
number of unknown DDIs, and using only text mining-
based methods to identify DDIs still has significant
limitations.

The feature-based learning approaches [7–9] refer to
using the structural feature vector of a drug as input
to learning deeper structural knowledge of the drug
through machine learning or deep learning methods
to predict potentially unknown DDIs. Ryu et al. [10] use
simplified molecular input line entry system (SMILES) of
a drug to extract molecular fingerprint representations
and calculate similarities between drugs to construct
drug structure feature vector and finally use a deep
neural network to predict DDIs. DeepPurpose [11], as
an integrated deep learning model, can input SMILES
to convolutional neural network (CNN) [12], recurrent
neural network (RNN) [13, 14], message passing neural
network (MPNN) [15] and transformer [16] to extract
structural features to predict DDIs. The method can be
used well with the NLP models RNN and transformer
for the task of predicting DDIs, especially transformer
can achieve good prediction results due to its location
information and attention mechanism. However, from
the point of view of feature encoding, SMILES, which only
stores one-dimensional structural information of drugs,
cannot characterize drugs with the spatial structure well.

There are many graph-based deep learning methods,
such as graph convolutional neural network (GCN) [17,
18], graph attention network [19–21] and gated graph
neural network [22, 23], which have performed well in
the fields of social networks and knowledge graphs. The
molecular graph of a drug can store not only the atomic
information but also the positional and spatial informa-
tion of atoms. Recently, graph-based models have been
applied in the field of drug development and discovery
[24]. In the field of DDIs prediction, DeepDrug [25] uses
the feature matrix and adjacency matrix of the drug
molecule graph and then feeds both into the GCN to learn
the deep representation of the features to predict DDIs.
DPDDI [26] uses GCN to extract topological relationships
of drugs from DDI networks to learn low-dimensional
feature representations of drugs. Attention based [27–
29] on multi-headed attention mechanism performs very
well on various prediction tasks. Graphormer [30] first
uses a transformer for processing graph structure, it uses
centrality encoding, spatial encoding and edge encoding
combined with attention to the encoding graph structure
and the model outperforms traditional graph neural net-
work models. Due to the large number of nodes in the
drug molecule map and the large computational effort
of the transformer itself, the model is computationally
and storage expenses and therefore not suitable for DDIs
prediction tasks.

In this paper, we propose Molormer, a method based
on a lightweight attention mechanism for DDI prediction
that can encode the spatial structure of the molecular
graph. The contribution of our method is as follows:
(i) traditional DDIs prediction methods only use drug
sequence or graph information but ignore the spatial
structure information of atoms. Molormer uses 2D struc-
ture of drugs as input and uses centrality encoding, spa-
tial encoding and edge encoding [30] to encode molecule
graph. (ii) Molormer uses a lightweight-based attention
mechanism to process spatially the encoded molecular
graph, which not only preserves the multi-headed atten-
tion mechanism but also alleviates the computational
and storage costs of the model. (iii) A Siamese network
architecture [31] is used as the design architecture of
Molormer, where the two drugs of the input model share
the same neural network model weights so that the
limited data can be fully utilized to train the model for
a better fit.

Methods
Before inputting drug A and drug B into Molormer, we
need to extract the graph structure in the 2D structural
information of the drug download from DrugBank
[32] that can be applied to the attention mechanism.
We first extracted the atom and bond information
of drug using Rdkit [33]. We then feed the generated
graphs of the two drugs into Molormer. The architecture
diagram of Molormer is shown in Figure 1. In Molormer,
the original drug graph is first fed to the embedding
layer to be embedded as four forms of features, which
jointly can characterize the representation of a drug
in spatial structure. Next, the two generated drug
features are input to two ProbSparse self-attention
blocks to extract to two feature maps, respectively.
After concatenating the two feature maps, they are fed
to the decoder for dimensionality reduction and final
prediction.

Weight-sharing-based atom feature embedding
The previous methods [7, 25], after obtaining atom
and bond information of drug graph, would be directly
embedded and input to graph-based models (such as
MPNN, GCN) for feature extraction. As for the molecular
graph, the importance of each atom is different, which
has been neglected in the current calculations of
attention. The more edges that exist for an atom, the
more associations or interactions between atoms, then
the more we consider it to be of interest. In this paper,
we represent the importance of an atom by computing
its degree centrality and combine it with the features
of the atom itself to form the centrality feature of the
atom, which can better allow the model to capture
the semantic relevance and importance of atom in the
attention mechanism [30].
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Figure 1. The overview of Molormer.

We define the atom i in drug A as a vector xA
i comprised

of 9 elements, as shown in the following:

xA
i = [α1, α2, α3, α4, α5, α6, α7, α8, α9] , (1)

where xA
i denotes the digital representation of the drug

A atom i. α1 is the number of the atom in the drug. α2

represents chiral information including unspecified, R-
type and S-type. α3, α4, α5, α6, α7, α8, α9 represent degree
(number of bonds involved), formal charge, number of
connected hydrogen atoms, number of radical electrons,
hybridization, whether it forms an aromatic bond and
whether it is in a ring, respectively. All elements in xA

i can
be obtained by Rdkit and are embedded as integers by a
dictionary defined in advance.

The centrality of the atom is measured using the
degree of the atom. Typically, there is no directionality
of bonds in a molecule, so the in and out degrees are
equal. For example, if atom i in drug A has 4 bonds, then
the in-degree IA

i and the out-degree OA
i of the atom are

both 4. In addition, the degree in the definition of atom in
Equation (1) is used to represent the atom feature itself,
and centrality is used to represent the importance of
the atom. In Equations (2) and (3), we use two different
learnable shared weight matrices to learn the embedding
representation of the atom feature and centrality feature,
respectively.

The embedding equations for EA
atomi

and EB
atomj

of atom

i of drug A and atom j of drug B with centrality features
are as follows:

EA
atomi

= WxxA
i + WoutOA

i + WinIA
i (2)

EB
atomj

= WxxB
j + WoutOB

j + WinIB
j , (3)

where WxxA
i denotes the atom feature of drug A atom

i. OA
i denotes the out-degree centrality vector of drug A

atom i and IA
i denotes the in-degree centrality vector of

drug A atom i. WoutOA
i + WinIA

i is the centrality feature of
drug A atom i. The same is true for the corresponding
parameters of drug B. Wx,Wout and Win are learnable
shared weight matrices, which are jointly used by drug A
and drug B in the Siamese network architecture to learn
features of atoms during parameter updates.

Weight-sharing-based edge feature embedding
Using only the centrality feature of atom to represent
molecule is still not comprehensive enough. The atom
spatial position and bond level of the molecular graph
all have critical effects on the property of molecule,
so how to accurately encode the bond feature is also
a crucial issue. In addition, the atoms in a molecular
graph are distributed in a multi-dimensional space, so
we need to encode the position feature of atoms and
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edges with the help of the spatial association information
between atom pairs. The spatial location encoding of
atom is unlike sequential data where absolute location
embedding [16] or relative location embedding [34, 35]
can be performed for each token. Ying et al. [30] proposed
to solve this problem with a learnable spatial encoding in
an attention mechanism, where the spatial information
between two nodes is the shortest path distance between
them. However, the combination of feature with huge
dimensionality and computationally intensive attention
mechanism can lead to dimensional explosion. To solve
this problem, we first use a matrix of shared weights
to learn the spatial feature embedding of atom, which
can be unnecessarily repeated training for the model.
And apply ProbSparse self-attention [36] in Molormer,
we will introduce this computationally reduced attention
mechanism in the next section.

For an adjacent node (atom) pair
(
a, b

)
with edges

(bonds), its edge e(
a,b

) is defined as follows:

e(a,b) = [β1, β2, β3] , (4)

where β1 represents the bond type, β2 represents the
stereochemical bond and β3 represents whether or not
the bond is conjugated. β1, β2, β3 can be obtained by Rdkit
and are embedded as integers by a dictionary defined in
advance.

Next, we define the spatial structure information. For
a node pair

(
i, j

)
, we first find the shortest path P =(

e1, e2, . . . , ek
)

from xi to xj and then use its shortest path
distance to represent the relationship between the posi-
tions of two nodes on the space structure. If the node pair(
i, j

)
is connected (can be non-adjacent), then we take the

shortest path distance as the spatial location s(
i,j
) of the

edge e(
i,j
). If the node pair

(
i, j

)
is unconnected, then we

set the spatial location s(
i,j
) of its edge e(

i,j
) to −1.

After obtaining the digital representations of edge and
spatial structure, the edge e(

i,j
) of drug A and edge e(

m,n
)

of drug B with spatial structure information are embed-
ded as follows:

EA
edge(i,j)

= 1
k

k∑
l=1

PA
l Wedge + WspatsA

(i,j)
(5)

EB
edge(m,n)

= 1
k

k∑
h=1

PB
hWedge + WspatsB

(m,n), (6)

where 1
k

∑k
l=1 PA

l Wedge is the embedding of edgeeA(
i,j
) in

drug A, which is obtained by averaging the dot-products
of edge feature PA

l and a learnable shared weight matrix
Wedge in the shortest path PA of the atom pair

(
i, j

)
in

drug A. PA
l is the lth edge in the shortest path PA of the

atom pair
(
i, j

)
in drug A and k is the number of edges

in the shortest path PA. WspatsA(
i,j
) is the embedding of

spatial structure feature of atom pair
(
i, j

)
in drug A.

The same is true for the corresponding parameters of
drug B. Wedge and Wspat are two learnable shared weight
matrices, which are jointly used by drug A and drug B
in the Siamese network architecture to learn features of
atoms during parameter updates.

ProbSparse self-attention stacked encoder
After we get the node features and edge features of
the molecular graph, there are many limitations if we
process them with traditional attention mechanism [16].
The large number of nodes of molecules and the large
dimensionality of the feature vectors can lead to multi-
headed attention hardly determining which informa-
tion is important. And it also suffers from a series of
problems such as high time complexity, high memory
overhead, and can even lead to dimensional explosion.
Therefore, we propose a stacked block molecular graph
encoder based on ProbSparse self-attention [36] to filter
out the most important queries and reduce computa-
tional complexity, while using self-attention distilling to
reduce feature dimensionality and the number of param-
eters of network. Encoder includes three ProbSparse self-
attention blocks, and the first two blocks are followed by
CNN to do distilling. The molecular graph of drug A and
drug B is extracted by encoder and two feature maps are
obtained.

Traditional self-attention requires O
(
LQLk

)
memory

and a quadratic dot product computational cost, which is
the main drawback of its predictive power. It is found that
a few dot products of sparse self-attention contribute to
the main attention and other dot product pairs can be
ignored. ProbSparse self-attention can be calculated by
the following equation:

Attn (Q, K, V) = Softmax

(
QKT

√
d

)
V, (7)

where Q is the same sparse matrix as the query size and
it contains only top-u queries. We compute and rank all
queries in Q according to the KL scatter-based sparsity
measurement proposed by Zhou et al. [36] and then use
top-u queries (in this paper u is 25) to form Q take the
place of Q. In this way, the dot product computation time
complexity of ProbSparse self-attention is O

(
lnLQ

)
, and

the memory occupation per query-key lookup and per
block is O

(
LKlnLQ

)
[36].

After inputting the features of embedded drug A and
drug B into encoder, the formula for calculating Prob-
Sparse self-attention is as follows:

AttnA
(i,j)

= Softmax

⎛
⎜⎝

(
EA

atomi
WQ

) (
EA

atomi
WK

)T

√
d

+ EA
edge(i,j)

⎞
⎟⎠

(
EA

atomi
WV

)
(8)
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AttnB
(m,n) = Softmax

⎛
⎜⎝

(
EB

atomm
WQ

) (
EB

atomm
WK

)T

√
d

+ EB
edge(m,n)

⎞
⎟⎠

(
EB

atomm
WV

)
, (9)

where WQ , WK and WV are the learnable shared weight
matrices. All three attention blocks in Encoder are calcu-
lated based on the above formula.

In addition, each attention block is followed by a dis-
tilling operation to privilege the high-level mapping with
dominant features and generate a focused feature map
at the next level. The specific calculation formula is as
follows:

Xj+1 = MaxPool
(
ELU

(
Conv1d

([
Xj

]
op

)))
, (10)

where [Xj]op denotes the ProbSparse self-attention and

necessary operations performed by the input to the jth
attention block. Conv1d

()
is a 1D convolution layer and

ELU
()

is activation function [37].

Decoder and prediction
After the embedded drug A and drug B with spatial
structure information are input to the encoder, two low-
dimensional feature maps representing the drug features
are output. Then, we concatenate the two feature maps
and input them into decoder. The decoder for DDIs pre-
diction consists of the CNN and DNN. In the decoder,
the concatenated feature map is first input to a layer of
CNN, and several order-invariant local convolution filters
in the CNN can capture and aggregate the interaction of
nearby regions, so the CNN is often used in interaction
encoders [38]. After the extracted interaction feature is
flattened, they are then input into a fully connected
layer consisting of three layers and finally input into the
softmax function to predict the DDI type.

Results and Discussion
The deep learning model for this experiment is based on
the Pytorch framework, and the conversion of drug stan-
dard delay format (SDF) file into the molecular graph is
done using Rdkit [33]. For Parameter setting, the learning
rate is 1e−4, batch is 32, epoch is 200, attention block
layer is 3, attention head is 8 and hidden dimension
of drug is 256. Also, we use adam optimizer and cross
entropy loss function to achieve the best performance of
Molormer.

Dataset and evaluation metrics
The dataset of DDIs proposed by Ryu et al. [10] is used as
the baseline dataset for this paper. This dataset includes
1710 drugs with 192 284 DDIs. All the DDIs are divided
into a total of 86 common DDI types, each described
by a common sentence. We downloaded SDF files

storing 2D structure information of drugs in DrugBank
[39] in order to obtain the 2D structure information of
the drugs, which will be inputted into Molormer. We
randomly divide the dataset into the training set, test
set and validation set in the ratio of 7:2:1 to train and
evaluate Molormer.

We evaluate the performance of model using metrics
that are commonly used in classification experiments,
including: accuracy, macro precision, macro recall and
macro F1 score. These evaluation metrics are as follows:

Accuracy = 1
n

n∑
i=1

xi =
{

1 if yi ≥ 0.5
0 otherwise

(11)

Macro Precision = 1
l

1∑
i=1

TPi

TPi + FNi
(12)

Macro Recall = 1
l

1∑
i=1

TPi

TPi + FPi
(13)

Macro F1 = 2 × Macro Precision × Macro Recall
Macro Precision + Macro Recall

, (14)

where n and l indicate the number of samples and DDI
types, respectively. In equation 9, xi is the predicted value
of true DDI type in dataset of sample i. And TP, TN, FN and
FN are true positive, true negative, false positive and false
negative, respectively.

Baselines
(i) MPNN uses message passing neural network [15] to
extract drug feature. It can extract embedding vector
to molecular graph-level by embedding vector for each
atom and edge. A multi-layer perceptron decoder is used
to predict DDIs.

(ii) LSTM is a special kind of RNN, which is mainly
designed to solve the gradient disappearance and gradi-
ent explosion problems during training of long sequences
[40]. We use frequent consecutive sub-sequence mining
[38] as the word embedding algorithm to predict DDIs
after getting the embedding features of drugs input to
the LSTM.

(iii) Morgan-CNN [11] inputs Morgan Fingerprint of
drug into a multi-layer perceptron to extract low-
dimensional feature, and after concatenation features
of two drugs, finally inputs them into a multilayer 1D
CNN for prediction of DDIs.

(iv) MolTrans [38] uses frequent consecutive sub-
sequence mining algorithm to extract sub-structures of
SMILES, and transformer for enhanced representation of
sub-structures. The model is currently a more advanced
DTI prediction method, but it is equally applicable to the
DDIs task, and we use the hyperparameters from the
original paper for our experiments.

(v) Hyper-AttentionDTI [41] is currently the most
advanced method for predicting DTIs, and it is also
applicable to the DDI prediction task. The model uses
a deep CNN to learn the feature matrix of drugs. To
model complex non-covalent molecular interactions
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Figure 2. Molormer achieved the best prediction performance in comparison with other advanced methods (the average of five random executions).

between atoms and atoms, the model uses the attention
mechanism of the feature matrix to assign an attention
vector to each atom.

Comparison with state-of-the-art methods
To evaluate the performance of Molormer on the multi-
classes DDIs prediction task, we first conducted exper-
iments comparing it with other state-of-the-art meth-
ods, and the experimental results are shown in Figure 2.
According to Figure 2, we can see that Molormer achieved
the best performance in all evaluation metrics. Among
them, accuracy of MolTrans is tied with Molormer for
first place, but all other metrics are lower than Molormer.
In the multi-class DDIs prediction task, the number of
samples per class is extremely unbalanced and accuracy
does not fully reflect the performance of model on unbal-
anced dataset. Note that each sample contains a pair of
drugs and a label meaning which type of interactions
they can interact with each other. Therefore, we need
to combine the other three metrics to evaluate model,
which can reduce the influence of the unbalanced cate-
gories.

As shown in Table 1, we can see that the macro
precision, macro recall and macro F1 of Molormer are
2.13, 2.16 and 2.09% higher than MolTrans, respectively,
and 1.6, 2.73 and 2.09% higher than Hyper-AttentionDTI,
respectively. In summary, we believe that Molormer has

the best performance. While some previous works [7,
11, 25] have treated the prediction of DDIs as a binary
classes problem, in this paper, we perform multi-classes
prediction of DDIs.

To further compare the prediction accuracy of Molormer
with other models for each category, we calculated
the prediction accuracy for each category, as shown
in Figure 3. The result is calculated based on the test
dataset, and some samples are small, so the prediction
accuracy will be lower, but Molormer still performs better
on the prediction of these categories.

Ablation studies
To further evaluate Molormer as well as to validate the
performance of the model under different settings, we
design four ablation studies: (i) with or without centrality
encoding and spatial encoding, (ii) with or without Prob-
Sparse self-attention, (iii) with or without CNNs for self-
attention distilling and decoding and (iv) with or without
weight-sharing Siamese network architecture.

With or without centrality encoding and spatial
encoding
The impact of how drug is encoded on predicted outcome
of the final DDIs is crucial, and how to accurately encode
drug is a challenge for current research. Frequent consec-
utive subsequence (FCS) mining algorithm [38] is similar

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbac296/6645994 by Yonsei U

niversity user on 19 July 2022



Molormer | 7

Table 1. Molormer achieved the best prediction performance in comparison with other advanced methods (five random executions)

Method Accuracy Macro precision Macro recall Macro F1

MPNN
LSTM
CNN
MolTrans
Hyper-AttentionDTI
Molormer

0.8554 ± 0.001
0.9393 ± 0.001
0.9457 ± 0.002
0.9649 ± 0.001
0.9548 ± 0.002
0.9667 ± 0.002

0.7734 ± 0.002
0.8961 ± 0.011
0.9048 ± 0.002
0.9206 ± 0.003
0.9259 ± 0.004
0.9419 ± 0.004

0.7284 ± 0.006
0.8637 ± 0.017
0.8796 ± 0.022
0.9054 ± 0.007
0.8997 ± 0.004
0.9270 ± 0.002

0.7397 ± 0.006
0.8722 ± 0.011
0.8848 ± 0.012
0.9102 ± 0.006
0.9078 ± 0.003
0.9311 ± 0.002

Figure 3. Molormer performs best on all predicted types of DDIs.
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Table 2. Comparison of models with different encoding (five random executions)

Method Accuracy Macro precision Macro recall Macro F1

Without cent&spat encoding
Without centrality encoding
Without spatial encoding
FCS encoding
With cent&spat encoding

0.9634 ± 0.004
0.9596 ± 0.002
0.9626 ± 0.002
0.9631 ± 0.004
0.9667 ± 0.002

0.9383 ± 0.004
0.9370 ± 0.006
0.9297 ± 0.006
0.9266 ± 0.012
0.9419 ± 0.004

0.9194 ± 0.004
0.9229 ± 0.004
0.9191 ± 0.004
0.9108 ± 0.015
0.9270 ± 0.002

0.9268 ± 0.004
0.9283 ± 0.003
0.9226 ± 0.004
0.9135 ± 0.012
0.9311 ± 0.002

Table 3. Comparison of models with and without ProbSparse self-attention (five random executions)

Method Accuracy Macro precision Macro recall Macro F1 Time Memory

Self-attention
ProbSparse self-attention

0.9585 ± 0.002
0.9667 ± 0.002

0.9322 ± 0.002
0.9419 ± 0.004

0.8976 ± 0.004
0.9270 ± 0.002

0.9101 ± 0.002
0.9311 ± 0.002

2.3 ± 0.1326
1.3 ± 0.1010

21,937 MiB
13,201 MiB

to the word embedding method in NLP, which is based on
SMILES and generates a set of subsequences according to
frequency of occurrence of sub-strings. In this ablation
study, we compare FCS encoding, without centrality
encoding and spatial encoding (cent&spat), without
centrality encoding, without spatial encoding and with
centrality encoding and spatial encoding (cent&spat).
The experimental results are shown in Table 2.

According to Table 2, we can see that the model with
cent&spat encoding preforms the best on all evaluation
metrics. We believe that the reason for poor effect of FCS
encoding is that it only uses drug sequence structure
information, which ignores the spatial structure infor-
mation of molecule. In addition, when the model without
cent&spat encoding but only atomic and bond informa-
tion of the molecular map is adopted, it is preferable
to using centrality encoding or spatial encoding individ-
ually. Therefore, we conclude that these two encoding
schemes must be used simultaneously to better charac-
terize the spatial structure of the molecular graph.

With or without ProbSparse self-attention
Self-attention can assign different attention weights to
different content, and self-attention-based approaches
have achieved amazing success in many fields. However,
the computational effort of the self-attention mecha-
nism is very large, and the computational power and
memory capacity of current GPUs are limited. Therefore,
this paper uses a lightweight ProbSparse self-attention
for the DDIs prediction task. To validate the performance
of ProbSparse self-attention in DDIs prediction task, we
evaluated not only the prediction performance of the
model but also the time and GPU memory used for
each epoch during training, and experimental results are
shown in Table 3.

According to Table 3, we can see that the accuracy,
macro precision, macro recall and macro F1 of the model
using ProbSparse self-attention are 0.82, 0.97, 2.94 and
2.1% higher than those of the model using self-attention,
respectively. In terms of time and memory, for each epoch
in training, the model using self-attention takes 2.3 h and

21 937 MiB of memory, while the model using ProbSparse
self-attention takes only 1.3 h, saving almost half the
time and memory.

With or without CNNs for self-attention distilling
and decoding
In Molormer, we use CNNs in two places for self-attention
distilling and dimensionality reduction, respectively.
First, we apply three attention blocks in Molormer and
add the self-attention distilling module comprised of
CNNs between the first two attention blocks to reduce
final interaction feature dimension and the number
of parameters of Molormer. Second, we use a CNN to
reduce the concatenated feature map and then use
the fully connected layer for the final prediction. To
verify the effect of CNNs for self-attention distilling and
decoding on model performance, we conduct an ablation
study without CNNs for distilling and decoding, and the
experimental results are shown in Table 4.

In terms of prediction performance, we can see that
the model with CNNs performs the best on all eval-
uation metrics. Molormer concatenate and flatten the
two feature maps output from the third attention block
to generate interaction feature. The interaction feature
dimensions generated by the model without CNNs for
self-attention distilling is 8192, without CNN for decod-
ing is 33 280, while the interaction feature dimensions
generated by the model with self-attention distilling is
2048. Moreover, the number of model parameters with-
out CNNs for self-attention distilling, without CNN for
decoding and with CNNs are 11.76, 25.39 and 9.40 M,
respectively. The amount of model parameters is reduced
drastically. In summary, it can be seen that using CNNs
in Molormer not only improves the overall prediction
performance of the model but also is a more lightweight
model.

With or without weight-sharing Siamese
network architecture
Deep learning models for DDIs prediction usually need to
design two channels to process the features of two drugs,
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Table 4. Comparison of models with or without CNNs (five random executions)

Method Accuracy Macro precision Macro recall Macro F1 Dimensions Parameters

Without CNNs for distilling
Without CNN for decoding
With CNNs

0.9455 ± 0.004
0.9645 ± 0.004
0.9667 ± 0.002

0.9268 ± 0.004
0.9364 ± 0.003
0.9419 ± 0.004

0.8865 ± 0.004
0.9205 ± 0.004
0.9270 ± 0.002

0.8993 ± 0.004
0.9262 ± 0.004
0.9311 ± 0.002

8192
33,280
2048

11.76 M
25.39 M
9.40 M

Table 5. Comparison of models with or without weight-sharing Siamese network architecture (five random executions)

Method Accuracy Macro precision Macro recall Macro F1

Without weight-sharing
With weight-sharing

0.9608 ± 0.002
0.9667 ± 0.002

0.9295 ± 0.011
0.9419 ± 0.004

0.9118 ± 0.014
0.9270 ± 0.002

0.9204 ± 0.09
0.9311 ± 0.002

Table 6. Predicted DDI types of drug pairs

Drug A Drug B DDI type (DrugBank v 5.0) DDI type (new prediction) Reference

Aliskiren Selexipag 60 49 Unknown
Aliskiren Furosemide 75 49 Unknown
Aliskiren Ketoconazole 73 47 Unknown
Selexipag Sulfamethoxazole 47 20 Unknown
Selexipag Epoprostenol 6 60 DrugBank v 5.0
Selexipag Fluconazole 47 73 Unknown
Vorapaxar Nimesulide 6 73 Unknown
Vorapaxar Amiodarone 73 40 DrugBank v 5.0
Vorapaxar Argatroban 49 6 DrugBank v 5.0
Vorapaxar Clopidogrel 6 47 Unknown

6: The metabolism of Drug_B can be decreased when combined with Drug_A. 20: Drug_A may increase the hepatotoxic activities of Drug_B. 40: Drug_A may
decrease the sedative activities of Drug_B. 47: Drug_A may increase the antihypertensive activities of Drug_B. 49: Drug_A may increase the antipsychotic activities
of Drug_B. 60: Drug_A may increase the hyperglycemic activities of Drug_B. 73: Drug_A may increase the neuromuscular blocking activities of Drug_B. 75: Drug_A
may increase the photosensitizing activities of Drug_B.

and the limited number of drugs in the DDIs dataset
may result in under-fitting during the training. Siamese
network can be used to process features with small
differences between the two inputs, and the differences
between the two networks are limited to some extent
because the weights are shared between them [42]. Based
on this property, Siamese network architecture in the
DDIs prediction model allows both networks to learn
the feature of drug accurately. To further validate the
effect of Siamese network on Molormer prediction per-
formance, we designed an ablation study with or with-
out weight-sharing Siamese network architecture, and
experimental results are shown in Table 5. According to
Table 5, we can observe that the accuracy, macro pre-
cision, macro recall and F1 of the model using weight-
sharing Siamese network architecture are higher than
that without.

Case study
In the above experiments, we verified that the predic-
tion performance of Molormer is superior and stable,
so we use Molormer in this section to predict DDIs for
three drugs with a wide range of applications, Aliskiren,
Selexipag and Vorapaxar. Aliskiren is the first drug in the
renin inhibitor drug class and is used for the treatment of
hypertension [43]. Selexipag act as agonists of the prosta-
cyclin receptor to increase vasodilation in the pulmonary

circulation and decrease elevated pressure in the blood
vessels supplying blood to the lungs [32]. Vorapaxar acts
as in the secondary prevention of cardiovascular events
in stable patients with peripheral arterial disease or a
history of myocardial infarction [44]. The results of the
new DDI type predictions are shown in Table 6, where
Aliskiren, Selexipag and Vorapaxar predicted three, three
and four new interactions, respectively. Among them,
the original DDI types in the dataset can be retrieved
in DrugBank, three of the predicted DDI types can be
validated by DrugBank and the rest of the new DDI types
we consider as the results of Molormer recommenda-
tions. In summary, we can see that some of the DDI
results predicted by Molormer can be verified by the
literature, which once again proves the accuracy of the
model prediction. Finally, for the completely new DDIs
predicted by Molormer, we hope to be provided with some
guidance for research and validation in the future.

Conclusion
In this paper, we propose Molormer, a method based on a
lightweight attention mechanism for DDI prediction that
can encode the spatial structure of the molecular graph.
We use spatial encoding with molecular spatial structure
to encoding the molecular graph. Besides, a lightweight-
based attention mechanism ProbSparse Self-attention is
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introduced to process the spatially encoded molecular
graph. Finally, we take the Siamese network as the archi-
tecture of Molormer to share a weight between two net-
works processing drug features. Experiments show that
our proposed method outperforms other state-of-the-
art methods. Our current work still has many potential
limitations. The model in this paper uses the 2D spatial
structure of the drugs, which leads to excessive time and
memory consumption in the data preprocessing part.
We suggest that the future solution to the limitations
of Molormer can start from two directions: the first is
to design lightweight deep learning models to reduce
the computation and running time. The second is to
design application-specific integrated circuit for running
DDIs prediction models to achieve fast computation. We
will do further work in the future to overcome these
limitations.

Key Points

• Accurate and rapid identification of the drug–drug inter-
actions is essential to enhance the effectiveness of com-
bination therapy and avoid unintended side effects.

• We propose Molormer, a deep learning-based method
for DDIs prediction. Molormer encodes the molecular
graph with spatial structure and uses a lightweight-
based attention mechanism to process spatially encoded
molecular graph. Finally, Siamese network architecture
is used to serve as the architecture of Molormer.

• Experiments show that our proposed method outper-
forms other state-of-the-art methods in terms of Accu-
racy, Precision, Recall and F1.

• We designed four ablation studies to verify that spatial
encoding, ProbSparse self-attention, self-attention dis-
tilling and Siamese network architecture contribute to
the overall prediction performance of the model from
multiple perspectives.

• In the case study section, we used Molormer to make
predictions of new interactions for the drugs Aliskiren,
Selexipag and Vorapaxar and validated parts of the pre-
dictions.

Data availability
We provide the Python source code of Molormer model
training, which is freely available at https://github.com/
IsXudongZhang/Molormer.
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