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Abstract

Collaborative perception enhances single-vehicle percep-
tion by integrating sensory data from multiple connected ve-
hicles. However, existing studies often assume ideal condi-
tions, overlooking resilience to real-world challenges, such
as adverse weather and sensor malfunctions, which is crit-
ical for safe deployment. To address this gap, we intro-
duce RCP-Bench, the first comprehensive benchmark de-
signed to evaluate the robustness of collaborative detec-
tion models under a wide range of real-world corruptions.
RCP-Bench includes three new datasets (i.e., OPV2V-C,
V2XSet-C, and DAIR-V2X-C) that simulate six collabora-
tive cases and 14 types of camera corruption resulting from
external environmental factors, sensor failures, and tem-
poral misalignments. Extensive experiments on 10 lead-
ing collaborative perception models reveal that, while these
models perform well under ideal conditions, they are sig-
nificantly affected by corruptions. To improve robustness,
we propose two simple yet effective strategies, RCP-Drop
and RCP-Mix, based on training regularization and fea-
ture augmentation. Additionally, we identify several crit-
ical factors influencing robustness, such as backbone ar-
chitecture, camera number, feature fusion methods, and the
number of connected vehicles. We hope that RCP-Bench,
along with these strategies and insights, will stimulate fu-
ture research toward developing more robust collaborative
perception models. Our benchmark toolkit is available at
https://github.com/LuckyDush/RCP-Bench.

1. Introduction
Perception is a fundamental capability for robots and au-
tonomous vehicles to accurately interpret their surround-
ings. Despite significant advancements in perception tasks
through deep learning, including object detection [3, 68]
and segmentation [19, 27], single-vehicle perception using
onboard sensors still faces inherent limitations, such as re-
stricted range, limited field of view, and vulnerability to oc-
clusions [17, 30, 50], resulting in blind spots that hinder full
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Figure 1. Comparison of collaborative object detection results
(averaged across 10 leading methods) in OPV2V-C across three
interference scenarios: Global, Ego, and CAV Interference. The
results indicate that perception models are particularly vulnerable
to Global Interference, benefit from collaborative compensation
under Ego Interference, and experience performance degradation
under CAV Interference.

environmental understanding [5]. Collaborative perception,
where perception data are shared among Connected Au-
tonomous Vehicles (CAVs), has shown promise in overcom-
ing these challenges. By leveraging multiple viewpoints,
collaborative perception extends perceptual range, enhances
spatial coverage, and improves resilience to occlusions [16].

Numerous studies have investigated practical challenges
that may impact collaborative performance, such as band-
width limitations for shared information [15, 32, 33, 44],
transmission issues [26, 38, 47, 60], pose estimation er-
rors [24, 34, 43, 66], and heterogeneity among cooperat-
ing vehicles [28, 48, 55]. However, current models and
evaluations generally assume idealized conditions, such
as clear weather and fully functional sensors. In real-
world driving scenarios, adverse conditions such as external
weather [9, 10, 18] and sensor failures [2, 12] are unavoid-
able. Although recent efforts address individual robustness
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challenges, including communication delays [23, 36] and
diverse weather conditions [14, 25], a comprehensive as-
sessment of robustness for collaborative perception in real-
world scenarios remains an important open challenge.

To bridge this gap, we introduce RCP-Bench, the first
benchmark designed to systematically evaluate the reliabil-
ity of collaborative perception methods under a wide range
of corruptions. Specifically, RCP-Bench comprises three
new datasets, including OPV2V-C, V2XSet-C and DAIR-
V2X-C. These datasets simulate six distinct cases and in-
corporate 14 types of corruption, incorporating variations
in weather conditions, sensor noise or failures, and temporal
misalignments, as depicted in Fig. 2. Given that collabora-
tive perception depends on data shared across collaborating
CAVs, where corruptions in individual vehicles can propa-
gate throughout the collaborative process, creating diverse
and challenging scenarios. RCP-Bench provides a holistic
assessment by evaluating robustness across three aspects:
• Global Interference: Both the ego vehicle and collaborat-

ing CAVs are affected by diverse corruptions, testing the
overall robustness of collaborative perception.

• Ego Interference: Only the ego vehicle experiences cor-
ruption, assessing the compensatory advantages of col-
laboration over single-vehicle perception.

• CAV Interference: Only the collaborating CAVs are sub-
ject to corruptions, evaluating the risk of disruptions com-
pared to single-vehicle perception.
Leveraging RCP-Bench, we conduct extensive experi-

ments on 10 collaborative perception models. As shown in
Fig. 1, while these models perform well under ideal condi-
tions, their performance significantly degrades in the pres-
ence of corruptions. To enhance the robustness, we propose
two straightforward strategies tailored for collaborative per-
ception: RCP-Drop and RCP-Mix. Unlike traditional meth-
ods [1, 8] that drop features within specific network lay-
ers or blocks during training, RCP-Drop operates by ran-
domly discarding data from selected collaborating vehicles,
effectively simulating real-world data loss encountered in
communication-limited or sensor-failure scenarios. RCP-
Mix, inspired by MixStyle [64, 65], probabilistically com-
bines feature statistics, i.e., the means and standard devia-
tions of feature maps, between the ego vehicle and collabo-
rating CAVs, promoting resilience to distribution shifts.

Our contributions can be summarized as follows:
• We introduce RCP-Bench, the first benchmark system-

atically evaluating collaborative perception robustness
across diverse real-world corruptions.

• We conduct a comprehensive evaluation of 10 leading
collaborative perception models across six scenarios, cov-
ering 14 corruption types.

• We propose two novel strategies to enhance the robust-
ness of collaborative perception models and highlight key
factors affecting resilience.

2. Related Work
Collaborative Perception: Collaborative perception [5,
6, 16, 34, 40, 54, 56, 58, 61, 62] allows vehicles to share
perceptual data with connected vehicles, realizing a more
comprehensive understanding of the surrounding environ-
ment. Existing studies have proposed various techniques
to enhance perception performance [42]. For example,
Who2com [33] and When2com [32] propose strategies for
selecting collaborators and determining the timing of col-
laboration. Where2comm [15] and What2comm [57] in-
troduce methods for selecting relevant information to be
shared. UMC [44] enhances spatiotemporal continuity in
collaborative perception by leveraging historical data and
multi-scale feature fusion. CoBEVT [51] enables real-time
collaborative semantic segmentation by capturing sparse lo-
cal and global spatial interactions across views and agents.
Nevertheless, most of these methods assume ideal condi-
tions, addressing robustness under diverse and challenging
conditions remains essential to advancing collaborative per-
ception reliability in practice.
Robustness against Corruptions: Perception models are
often vulnerable to various sensor corruptions, which can
compromise their effectiveness in real-world applications.
To evaluate and improve robustness under such conditions,
several benchmarks have been developed. ImageNet-C [12]
is the first public benchmark to assess object recognition
models under a range of corruptions, including noise, blur,
adverse weather, and digital interference. For object detec-
tion, Michaelis et al. [35] introduce three benchmarks to
examine robustness against similar impairments. Recently,
benchmarks tailored to driving scenarios have emerged. Ro-
boDepth [20] assesses robustness in monocular depth esti-
mation under corrupted conditions, while RoboBEV [49]
introduces a comprehensive benchmark for evaluating BEV
perception tasks. Similarly, MapBench [11] is designed
to test the robustness of high-definition mapping methods
against various sensor corruptions. Although these bench-
marks have advanced robustness assessments in single-
vehicle perception, they do not account for multi-agent con-
texts where corruptions may propagate, compounding ef-
fects across interconnected systems. Developing collabora-
tive perception specific benchmarks is crucial for evaluating
and improving robustness in these multi-vehicle scenarios.
Robustness in Collaborative Perception: With the ad-
vancement of collaborative perception research [13, 31, 37,
45], increasing attention is being paid to robustness and
safety, especially concerning communication challenges be-
tween cooperating agents. These challenges include issues
in data transmission, such as information loss during com-
munication [26] and communication interruptions [38], tim-
ing issues like delays [23, 47, 60] and the reception of out-
dated or missing collaborative information. While these
studies have highlighted potential pitfalls within the collab-
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Figure 2. Definitions of corruption types and evaluation scenarios in RCP-Bench. Our benchmark includes 14 types of camera corruptions,
classified into three categories: External Weather, Camera Interior, and Temporal Misalignment. To comprehensively evaluate robustness,
we define three interference scenarios: Global Interference (corruptions affecting both the ego vehicle and collaborative vehicles), Ego
Interference (corruptions specific to the ego vehicle), and CAV Interference (corruptions isolated to one or more collaborative vehicles).
Within the Global Interference scenario, we further examine four cases: Single Corruption, Multiple Corruptions, Heterogeneous Corrup-
tions, and New Scenes with Corruption.

orative process itself, robustness under diverse environmen-
tal and sensor conditions remains underexplored. Recently,
a few studies have begun to examine collaborative perfor-
mance under adverse environmental conditions [14, 25].
Nevertheless, these efforts are primarily limited to extreme
sensor failures, without systematically analyzing the ben-
efits and resilience of collaboration across a wider range
of realistic sensor corruptions. To the best of our knowl-
edge, this paper is the first to comprehensively examine the
robustness and advantages of different collaborative states
under diverse sensor corruptions, thereby providing an em-
pirical basis for assessing and improving collaborative per-
ception robustness across various real-world challenges.

3. RCP-Bench

3.1. Benchmark Design
Collaborative perception relies on information collected
by both the ego vehicle and surrounding connected au-
tonomous vehicles (CAVs), each contributing to the final
perception outcome. To rigorously evaluate the benefits of
shared information and assess model robustness under var-
ious corruptions, this study isolates these two information
sources and defines three corruption scenarios, as shown in
Fig. 2: (1) Global Interference scenario affecting both the
ego vehicle and CAVs simultaneously, (2) Ego Interference
scenario specific to the ego vehicle, and (3) CAV Interfer-
ence scenario isolated to one or more CAVs.

Given mutual interference among CAVs, independent

control of lidar-based corruptions is impractical; therefore,
this study focuses exclusively on camera-based corrup-
tions. We categorize these into three groups based on real-
world conditions: (1) External environmental factors, like
rain, fog, or light; (2) Internal camera issues, such as lens
scratches or sensor degradation; (3) Misalignment in cap-
ture timing, such as temporal desynchronization between
the ego and CAV cameras. We identify 14 distinct types
of corruption, following the methodology in [7], and divide
each type into five severity levels, resulting in 70 unique
corruption conditions. To evaluate collaborative perception
model robustness, we create three corruption benchmarks
using widely used datasets: DAIR-V2X [59], OPV2V [53],
and V2XSet [52]. These corruptions are introduced into the
validation sets, producing modified versions: DAIR-V2X-
C, OPV2V-C, and V2XSet-C.

3.2. Typical Corruption Scenarios
Global Interference: In practical applications, it is com-
mon for corruptions to affect both the ego vehicle and col-
laborative vehicles simultaneously. To evaluate model ro-
bustness across various types of corruption, we first assess
14 distinct corruptions individually, referring to this as the
Single Corruption case. To better reflect real-world com-
plexity, we further define three combined corruption cases.
The first, Multiple Corruptions, involves multiple types of
corruptions occurring concurrently. For simplicity, we fo-
cus on situations where temporal misalignment coincides
with either external weather conditions or internal camera
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issues. In the second case, Heterogeneous Corruptions, the
types of corruption affecting the ego vehicle differ from
those impacting the collaborative vehicles, allowing us to
examine situations with varying corruption profiles across
vehicles. Finally, in the New Scenes with Corruption case,
we extend prior research on the generalization of collabora-
tive perception by analyzing performance when corruptions
are introduced simultaneously in unfamiliar environments.
Ego Interference: In real-world scenarios, the ego vehicle
may experience unique corruptions that do not affect nearby
collaborative vehicles, presenting an opportunity to use un-
corrupted data from these vehicles as a compensatory mech-
anism. To explore this potential, we introduce the concept
of “collaborative compensation.” Here, when the ego ve-
hicle encounters interference or corruption, we investigate
whether reliable information from neighboring collabora-
tive vehicles can help mitigate or even correct these effects.
Since some forms of interference, such as adverse weather,
are unavoidable and impact all vehicles, we specifically fo-
cus on evaluating the advantages of collaborative compen-
sation for the remaining ten types of corruption that are
unique to the ego vehicle.
CAV Interference: Similar to Ego Interference, collabo-
rative vehicles may experience unique corruptions that do
not directly affect the ego vehicle, creating a potential risk
rather than a benefit. To examine this, we introduce the
concept of “collaborative disruption.” In this scenario, we
investigate whether corrupted data from surrounding col-
laborative vehicles can degrade the perception performance
of an otherwise well-functioning ego vehicle. This analysis
provides insights into the robustness of collaborative per-
ception systems, highlighting the potential adverse effects
of relying on collaborative data when unintentional corrup-
tions are present in the shared information.

3.3. Evaluation Metrics

In evaluating 3D object detection performance, Average
Precision (AP) is commonly used as the primary metric,
particularly at Intersection-over-Union (IoU) thresholds of
0.3, 0.5, and 0.7. Building on the evaluation metrics pro-
posed in [7, 41, 67], we introduce two metrics specifically
designed to assess the robustness of cooperative perception
systems: Corrupted Average Precision (APcor) and Relative
Corruption Error (RCE). To further examine the effects of
collaboration under Ego Interference and CAV Interference,
we define “Positive Collaborative” and “Negative Collabo-
rative”, and introduce two additional metrics: the Positive
Collaborative Coefficient (PosC) and the Negative Collab-
orative Coefficient (NegC). These four new evaluation met-
rics are primarily analyzed based on AP@0.5, additional re-
sults of AP@0.3 and AP@0.7 are provided in the appendix.
Corrupted Average Precision: We denote the performance
on the clean, uncorrupted test set as APclean. For each cor-

ruption type c at each severity l, the performance is mea-
sured as APc,l. The corruption robustness, APcor is then
defined as the average performance across all corruption
types and severity levels:

APc = 1
5

5∑
l=1

APc,l , APcor = 1
|C|

∑
c∈C

APc , (1)

where C is the set of corruptions in evaluation.
Relative Corruption Error: Since APcor measures only
the absolute performance under corrupted conditions, we
define Relative Corruption Error (RCE) as a relative indi-
cator that quantifies the extent to which model performance
is retained under corruption:

RCEc = APclean − APc

APclean
, mRCE = 1

|C|
∑
c∈C

RCEc . (2)

Positive Collaborative Coefficient: To quantify the ability
of collaborative information to mitigate corruptions affect-
ing the ego vehicle under Ego Interference, we define the
Positive Collaborative Coefficient (PosC), which measures
how effectively the model leverages collaborative informa-
tion from other vehicles to counteract corruptions:

PosCc =
APc,5 − APego

c,5

1 − APego
c,5

, mPosC = 1
|C|

∑
c∈C

PosCc , (3)

where APego
c,5 represents the performance of the ego vehi-

cle under a specific type of corruption at severity 5 in the
absence of collaboration.
Negative Collaborative Coefficient: To assess the adverse
impact of corrupted collaborative information under CAV
Interference, we introduce the Negative Collaborative Coef-
ficient (NegC), which quantifies the negative effects arising
from collaborative perception:

NegCc = 1 − APc,5

1 − APego
clean

, mNegC = 1
|C|

∑
c∈C

NegCc , (4)

where APego
clean denotes the perception performance of the

ego vehicle using only its own clean, uncorrupted data.

4. Benchmarking Results

In this section, we primarily present the results on OPV2V-
C. Additional results for DAIR-V2X-C and V2XSet-C are
provided in the appendix.

4.1. Benchmark Setup
Our RCP-Bench evaluates a total of 10 leading collaborative
perception models and their variants for the detection task,
including AttFuse [53], F-Cooper [4], V2X-ViT [52], Dis-
coNet [29], V2VNet [46], CoBEVT [51], and BM2CP [63].
To ensure a fair comparison, we use official model configu-
rations and public checkpoints from open-source codebases
where available or re-train the models using default settings
if necessary. For each corruption type, we report metrics by
averaging results across five severity levels. To provide a
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Table 1. Benchmarking results for Global Interference on OPV2V-C. We report the performance under each corruption APc and the overall
corruption robustness APcor averaged over all corruption types. The results are evaluated based on AP@0.5.

Cortype AttFuse [53] F-Cooper [4] V2X-ViT [52] DiscoNet [29] V2VNet [46] CoBEVT [51] Max Late NoFusion

APclean↑ 37.13 34.85 58.61 47.34 46.64 40.49 45.87 68.41 35.68

Weather

Bright 21.39 9.05 43.06 33.55 36.42 23.18 27.66 51.76 25.22
Dark 14.00 16.69 15.58 18.48 7.84 14.12 13.33 22.03 8.94
Fog 10.30 11.15 15.23 15.02 15.58 10.78 11.73 12.99 4.47

Frost 7.12 9.54 11.21 9.62 2.82 6.14 10.19 11.06 4.21
Snow 6.46 4.77 11.19 10.42 7.55 9.36 14.33 12.37 4.75

Noise
Gaussian 9.17 8.98 7.45 3.10 2.15 5.97 11.13 13.80 5.23
Impulse 9.17 9.01 8.11 2.08 2.03 5.65 10.56 14.91 5.55

Shot 8.58 10.55 8.48 0.71 2.27 4.51 11.26 15.60 6.24

Blur
Zoom 18.85 21.44 26.57 21.68 15.89 18.95 23.52 31.10 12.90

Motion 22.07 24.87 31.19 30.17 19.24 24.55 27.56 40.52 17.22
Defocus 18.64 17.65 21.57 21.27 8.79 17.01 19.09 17.07 6.55

Failure Crash 22.30 16.62 21.96 16.21 16.19 23.23 21.08 32.02 13.61
Color Quant 26.01 21.03 41.48 35.09 33.68 25.86 33.27 48.13 23.60

Alignment Tempormis 29.74 28.05 47.91 39.31 38.75 33.38 36.85 49.28 35.68
APcor↑ 15.99 14.96 22.21 18.34 14.94 15.91 19.40 26.62 12.44
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Figure 3. The relationships between baseline performance (APclean) and various metrics, including collaborative robustness (APcor ,
mRCE), collaborative compensation (mPosC) and collaborative disruption (mNegC).
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Figure 4. The corrupted average precision (APc) of existing meth-
ods across five severity levels of corruption.

comprehensive robustness evaluation, we also include three
non-learning baseline methods: Max, which directly maxi-
mizes the feature map for collaboration; Late, which fuses
final predictions shared from CAVs; and NoFusion, repre-
senting the ego vehicle perception model without collabo-
ration. The NoFusion model is further used to compute the
PosC and NegC metrics as defined in Eq. 3 and Eq. 4.

4.2. Benchmarking Results for Global Interference

Single Corruption: The performance of collaborative per-
ception models under various corruption types is presented

in Table 1, with results across different corruption sever-
ity levels shown in Fig. 4. The results indicate that ex-
isting models experience varying levels of performance
degradation depending on the corruption type, with con-
ditions like snow, frost, and noise having particularly se-
vere impacts. The NoFusion model consistently performs
the worst, showing significantly lower APcor across all cor-
ruption types, underscoring the limitations of single-vehicle
perception. Interestingly, the simple Max fusion method
outperforms several more complex models in interference
scenarios, suggesting that increased model complexity does
not necessarily lead to improved robustness against inter-
ference. Moreover, the Late fusion methods demonstrate
greater adaptability and robustness compared to existing in-
termediate feature fusion techniques.

To further understand the relationship between base-
line performance and robustness, we analyze the results in
Fig. 3a. The findings suggest that models with higher base-
line performance may handle disturbances better, likely due
to more robust feature extraction. Similarly, Fig. 3b shows a
positive correlation between a model’s mRCE and its clean-
data performance, indicating that higher-performing models
may also experience larger relative performance drops un-
der corruption. With mRCE values generally between 55%
and 70%, current models exhibit suboptimal robustness, un-
derscoring the need for further improvement.

Multiple Corruptions: As shown in Fig. 5, different types
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of corruptions have varying impacts on CoBEVT [51] and
AttFuse [53], with noise and frost disturbances causing the
most significant performance degradation. Adding tempo-
ral misalignment to these camera corruptions further inten-
sifies the effects of disturbances such as brightness, motion,
and quantization. These results suggest that, in real-world
scenarios, the simultaneous occurrence of multiple distur-
bances presents even greater challenges for model robust-
ness. Please refer to the appendix for more results.
Hetero Corruptions: Fig. 6 shows that corruptions im-
pact the Ego vehicle more severely than the CAVs in both
DiscoNet [29] and V2VNet [46]. When the Ego vehicle
is “Clean”, the system performs effectively despite vari-
ous “CAV corruption” conditions. However, when both
Ego and CAVs are subjected to different types of distur-
bances, the model’s performance declines significantly, par-
ticularly when one of them experiences crash corruption,
which has the most pronounced impact on overall system
performance. More results are included in the appendix.
New Scenes with Corruption: While collaborative per-
ception models are typically evaluated in familiar environ-
ments, real-world deployment demands robustness in di-
verse, unseen scenes. Table 2 evaluates the model perfor-
mance in familiar OPV2V scenes (Default) versus previ-
ously unseen scenes (Culver). The APclean performance of
V2X-ViT [52] declines by 47.8%, indicating that the scene
variation significantly impacts model effectiveness. When
disturbances and new scenes occur simultaneously, perfor-

Table 2. Performance comparison in the familiar OPV2V scenes
(Default) versus the unseen new scenes (Culver).

APclean↑ APcor↑ mRCE↓Model Default Culver Default Culver Default Culver

AttFuse 37.13 19.48(↓47.5%) 14.93 7.29(↓51.2%) 41.51 41.93(↑1.0%)
F-Cooper 34.85 26.52(↓23.9%) 13.95 8.58(↓38.5%) 37.54 48.25(↑28.5%)
V2X-ViT 58.61 30.62(↓47.8%) 20.24 9.11(↓55.0%) 46.94 51.38(↑9.5%)
DiscoNet 47.34 28.66(↓39.5%) 16.72 8.31(↓50.3%) 49.94 53.65(↑7.4%)
V2VNet 46.64 26.80(↓42.5%) 13.11 6.79(↓48.3%) 53.86 56.96(↑5.8%)
CoBEVT 40.49 23.97(↓40.8%) 14.56 7.10(↓51.2%) 46.42 49.39(↑6.4%)
Max 45.87 24.97(↓45.6%) 18.05 7.56(↓58.1%) 41.90 47.95(↑14.4%)

mance drops further, with APcor decreasing by 55% and
RCE increasing by 9.5%. These results highlight the chal-
lenges that current collaborative methods encounter in han-
dling disturbed environments with unfamiliar scenes.

4.3. Benchmarking Results for Ego Interference
When the ego vehicle encounters unique corruptions, uncor-
rupted data from collaborators can offer collaborative com-
pensation. Table 3 verifies this through PosCc and mPosC
metrics. Results indicate that the simple Late fusion signifi-
cantly enhances mPosC compared to other intermediate fu-
sion methods, suggesting that complex fusion models (e.g.,
attention-based [51–53], graph-based [29, 46]) are effective
only when the ego vehicle captures essential information.
The compensation stability varies across models and dis-
turbances: V2X-ViT [52] and V2VNet [46] show fluctua-
tions, whereas F-Cooper [4] and CoBEVT [51] exhibit more
consistency. Fig. 3c further reveals a positive correlation
between collaborative compensation mPosC and baseline
performance APclean, suggesting that models with higher
baseline results provide stronger compensatory support.

4.4. Benchmarking Results for CAV Interference
In scenarios where collaborative vehicles experience unique
corruptions not directly affecting the ego vehicle, shared
data from these vehicles can introduce “collaborative dis-
ruption.” Table 3 presents the NegCc and mNegC metrics
to quantify this effect. A NegC value over 100% indicates
that corrupted data from collaborators degrades the ego ve-
hicle’s performance. The results show that the Late fusion
is less vulnerable to these disruptions and often provides
positive benefits even under corruption, while intermediate
feature fusion methods tend to reduce performance. Ad-
ditionally, Fig. 3d shows that higher baseline performance
(APclean) correlates with reduced collaborative disruption,
suggesting that models with stronger baseline performance
may better handle corrupted collaborative data.

5. RCP-Drop & RCP-Mix
To enhance robustness under various corruption scenarios,
we develop two simple yet effective strategies specifically
for collaborative perception: RCP-Drop and RCP-Mix.

Dropout [1, 8] is a widely used regularization technique
in deep learning, aimed at reducing model overfitting by
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Table 3. Benchmarking results for Ego Interference and CAV Interference on OPV2V-C. We report collaborative compensation and
disruption performance under each corruption type, including NegCc and PosCc, as well as averages across all corruption types, mNegC
and mPosC. Results are evaluated based on AP@0.5. Further details are available in the appendix.

AttFuse [53] F-Cooper [4] V2X-ViT [52] DiscoNet [29] V2VNet [46] CoBEVT [51] Max LateCor Types NegCc PosCc NegCc PosCc NegCc PosCc NegCc PosCc NegCc PosCc NegCc PosCc NegCc PosCc NegCc PosCc

Bright 121.27 8.54 115.97 9.68 86.68 28.90 95.77 18.29 103.03 27.29 107.82 6.24 108.71 20.68 82.45 50.82
Dark 126.73 12.96 122.28 21.77 104.24 14.80 109.59 18.68 127.29 6.43 116.00 14.97 121.52 22.14 99.91 50.81
Zoom 117.63 19.66 116.43 21.74 93.72 29.29 100.96 20.66 107.62 23.63 107.98 17.63 104.68 25.41 88.50 51.99

Motion 116.67 21.12 115.52 22.50 94.50 25.84 99.33 22.52 117.46 9.83 106.19 19.19 102.83 25.67 90.30 51.09
Defocus 118.17 25.27 116.87 24.62 99.47 27.14 106.20 20.90 121.30 10.81 107.82 18.68 107.80 27.13 101.55 50.36
Gaussian 127.32 13.30 122.73 15.47 112.39 10.16 115.02 12.32 123.35 5.81 117.93 11.545 115.84 24.71 99.75 50.83
Impulse 127.04 15.75 122.98 14.94 112.06 11.78 115.13 11.82 123.21 5.62 117.86 11.11 115.33 24.33 99.53 50.84

Shot 126.87 13.12 122.01 17.78 112.33 9.86 115.39 11.64 123.82 5.95 118.17 11.81 114.04 25.70 99.89 50.82
Crash 116.22 22.35 115.73 20.51 97.50 13.75 107.04 10.67 112.58 11.98 105.05 18.96 108.12 24.21 91.53 50.14
Quant 118.03 17.63 113.91 22.49 99.86 22.69 98.60 21.65 110.00 20.66 110.00 12.82 110.14 25.83 98.76 48.70

mNegC↓/mPosC↑ 121.59 16.97 118.44 19.15 101.27 19.42 106.31 16.92 116.97 12.80 111.48 14.29 110.90 24.58 95.22 50.64
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Figure 7. Overview of the RCP-Drop & RCP-Mix strategies.

randomly dropping features within certain network layers or
blocks during training. In the collaborative perception con-
text, the ego vehicle may encounter incomplete shared per-
ceptual data from CAVs due to communication failures, or
CAVs leaving the collaborative queue. Existing collabora-
tive perception models, while beneficial in multi-vehicle se-
tups, often underperform in single-vehicle scenarios due to
their learned dependency on supplementary data from other
vehicles. To prevent models from being overly reliant on
CAVs data and to better equip them for single-vehicle op-
eration, as shown in Fig. 7 we introduce RCP-Drop, which
simulates these conditions by selectively discarding infor-
mation from certain CAVs. Technically, it is defined as:

F ego
agg = A(F ego, {1(pi < pdrop) · F cav

i }N
i=1), (5)

where F ego represents the feature originating from the ego
vehicle, F ego

agg denotes the aggregated feature after percep-
tion information exchange, and F cav

i is the feature map
shared from the i-th collaborative vehicle. Here, A is a
specific feature fusion function developed in existing meth-
ods [29, 44, 53], pi is sampled from a uniform distribution
between 0 and 1, and pdrop is the threshold determining
whether data from each collaborative vehicle is discarded.

Rather than keeping the threshold fixed during train-
ing, we develop a dynamic adjustment strategy for pdrop.
Specifically, we start with a high dropout probability, which
reduces the number of participating collaborative vehicles
and enhances the single-vehicle backbone’s feature extrac-
tion capabilities. Gradually, we lower the dropout proba-
bility to increase the participation of collaborative vehicles,
optimizing the collaborative perception performance over
time. In this study, we set pdrop = 1.0 − (t/T )2, where t
and T are the current and maximum training epoch.

Existing research shows that visual data can be char-

Table 4. Efficacy of RCP-Drop and RCP-Mix on collaborative ro-
bustness, collaborative compensation and collaborative disruption.

APclean ↑ mAPcor ↑ mNegC ↓ mPosC ↑

CoBEVT [51] 40.49 15.91 111.48 14.29
+BN [39] 42.74 27.87 112.94 18.28
+BN+RCP-Mix 48.25 31.83 109.11 23.44
+BN+RCP-Drop 47.84 30.68 109.45 20.07

AttFuse [53] 37.13 15.99 121.59 16.97
+BN [39] 36.13 22.35 126.04 18.85
+BN+RCP-Mix 43.12 28.85 114.97 22.51
+BN+RCP-Drop 45.18 27.56 115.64 18.17

acterized by feature statistics (i.e., the mean and standard
deviation of feature maps). For the same semantic con-
cepts, distinct styles (such as variations in color and tex-
ture) correspond to different feature statistics. Inspired by
Mixstyle [64, 65], we propose RCP-Mix to enhance model
adaptability to varied environmental conditions and styles
encountered in collaborative perception. Unlike Mixstyle,
which performs random feature statistic mixing across in-
stances within a mini-batch, RCP-Mix probabilistically
combines feature statistics between the ego vehicle and col-
laborating CAVs. Technically, RCP-Mix is defined as:

µall = 1
N

N∑
i=1

µi; σall = 1
N

N∑
i=1

σi,

µmix
i = λµi + (1 − λ)µall,

σmix
i = λσi + (1 − λ)σall,

F mix
i = Fi − µi

σi
∗ σmix

i + µmix
i ,

(6)

where µi, σi are the means and standard deviations of the
feature map Fi, λ is the weight sampled from the Beta dis-
tribution, i.e., λ ∼ Beta(α, α), we set α = 0.1 by default.
Experimental Analysis: We selected CoBEVT [51] and
AttFuse [53] with online Batch Normalization (BN) Stats
Adapt [39] as baselines, integrating them with our RCP-
Drop and RCP-Mix strategies. Table 4 demonstrates that,
despite their simplicity, both RCP-Drop and RCP-Mix ef-
fectively counteract performance degradation from data
corruptions. In particular, for APclean, these strategies
lead to substantial performance improvements compared to
the marginal gains or occasional declines observed with
the vanilla BN adapt. Moreover, across the three inter-
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Table 5. Ablation on the use of different backbone.
Method backbone Weather Blur Noise Quant Crash AP APcor

Max ◦ ResNet101 11.79 22.3 22.77 22.87 18.64 35.12 18.14
Max • EfficientNet-b0 15.45 23.39 10.98 33.27 21.08 45.87 18.05

V2X-ViT◦ ResNet101 10.90 24.66 16.63 28.75 10.41 46.21 16.73
V2X-ViT • EfficientNet-b0 19.25 26.45 8.01 41.48 21.96 58.61 20.24

Table 6. Ablation on the use of multiscale fusion.
Method multiscale Weather Blur Noise Quant Crash AP APcor

Max ◦ ✗ 15.45 23.39 10.98 33.27 21.08 45.87 18.05
Max • ✓ 30.65 34.92 28.61 49.86 38.15 65.38 33.22

AttFuse◦ ✗ 11.85 19.85 8.97 26.01 22.30 37.13 14.93
AttFuse • ✓ 23.36 31.90 9.01 43.43 30.07 62.58 24.08
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Figure 8. Impact of different backbone sizes on model robustness.
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Figure 9. Effect of CAV number on model robustness.

ference scenarios, Global Interference, Ego Interference,
and CAV Interference, our RCP-Drop and RCP-Mix con-
sistently show robust improvements in model resilience
under corruption conditions (APcor), collaborative com-
pensation (mPosC), and reduced collaborative disruption
(mNegC). These results further underline the efficacy of
our approaches in maintaining model performance and col-
laborative stability in challenging conditions.

6. Observation & Discussion
In this section, we analyze and discuss the impact of various
model configurations and techniques on robustness.
Backbones: Table 5 compares the performance of differ-
ent backbones, showing that models using EfficientNet-b0
outperform ResNet101 [22] in all conditions except noise
disturbances. leading to its use as the backbone for all
models in this study. Fig. 8 further compares AttFuse
with various backbone sizes, revealing that larger back-
bones generally improve robustness. Notably, EfficientNet-
b0 and EfficientNet-b3 [21] show greater stability and ro-
bustness across multiple conditions, particularly excelling
under “Noise” and “Crash” scenarios, while EfficientNet-
b2 performs poorly in these cases.
Feature Fusion: Table 6 shows that multiscale fusion en-
hances model performance on clean datasets and improves
robustness against various perturbations. Additionally, the
simple Max Fusion demonstrates greater robustness than
attention mechanisms, particularly under noisy conditions,
suggesting that more complex mechanisms may be less ef-
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Figure 10. Effect of camera number on model robustness.

fective at mitigating certain types of perturbations.
CAV and Camera Number: Fig. 9 shows that increas-
ing the number of collaborative CAVs generally enhances
model performance. Notably, two collaborating vehicles
provide a significant improvement over a single vehicle;
however, the rate of improvement diminishes once the num-
ber of collaborators exceeds four, indicating a diminishing
marginal effect. Fig. 10 shows that as camera count in-
creases, both model performance and robustness improve
significantly, with a particularly notable boost from three to
four cameras.

7. Conclusion
In this study, we introduce RCP-Bench, the first compre-
hensive benchmark designed to evaluate the robustness of
camera-based collaborative perception models under di-
verse real-world disturbances. RCP-Bench encompasses
14 corruption types at 5 severity levels across 3 large-
scale datasets. We systematically evaluate three collabo-
rative scenarios across six cases to assess robustness in the
Global Interference scenario, explore collaborative advan-
tages in the Ego Interference scenario, and examine dis-
turbance risks in the CAV Interference scenario. To im-
prove robustness, we propose two straightforward strate-
gies, RCP-Drop and RCP-Mix, tailored for collaborative
perception. Our analysis of backbone architecture, feature
fusion, CAV number, and camera number provides key in-
sights for enhancing model resilience. We hope this work
offers valuable insights and inspires future research toward
more robust collaborative perception models.
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