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Advancements in spatial omics permit spatially resolved measurements

across several biological modalities. The high cost of acquiring co-profiled
multimodal data limits the analysis. This underscores the necessity for
computational methods to integrate unpaired spatial multi-omics data and
perform cross-modal predictions on single-modality data. The integration
of spatial omics is challenging due to typically low signal-to-noise ratios.
Here we introduce SWITCH (Spatially Weighted Multi-omics Integration
and Cross-modal Translation with Cycle-mapping Harmonization), adeep
generative model for spatial multi-omics integration. SWITCH presents
acycle-mapping mechanism that produces dependable cross-modal
translations without requiring additional paired data. These cross-modal
translations function as pseudo-pairs to provide supplementary signals.
Systematic evaluations demonstrate that SWITCH outperforms existing

methodsin terms of integration accuracy and achieves more precise spatial
domain delineation, resolving brain cortical structures at higher resolution.
The reliability of cross-modal translations was validated, facilitating various
downstream analyses such as differential analysis, trajectory inference and
generegulatory network inference.

The progress of single-cell multi-omics technology has transformed
our capacity to investigate gene regulation processes across several
omics layers. However, tissue dissociation processes resultin theloss
of spatial context, which is crucial for comprehending cellular pro-
cesses. Spatial transcriptomics (ST)"* was developed to overcome this
constraintand has evolved to encompass spatial multi-omics, includ-
ing spatial epigenomics®” and proteomics®’. Despite advancements
enabling spatially resolved measurements of multiple omics within
asingle tissue section'®", the higher costs relative to single-omics
methods, along with limitations in resolution and cellular through-
put, lead to the current spatial omics data generally being restricted
to single modality. Consequently, there is an urgent necessity for
computational methods to efficiently integrate unpaired spatial
multi-omics datasets®.

Numerous methods have been proposed for the integration of
unpaired single-cell multi-omics data, including Seurat V3", LIGER",
bindSC, GLUE", SCALEX, SIMBA", MaxFuse®’, scConfluence” and
Monae”’. However, none of these methods use spatial information,
whichis crucial for accurate detection of spatial domains. Furthermore,
asthese methods are primarily designed for single-cell omics, they fail
tofullyaccountfor theinherently low signal-to-noise ratio characteris-
tic of spatial omics, whichis particularly evident in modalities beyond
transcriptomics®>?, This much noise may resultin erroneous or failed
integration and limit the precise delineation of spatial domains.

In addition, the limitations of co-profiling spatial multi-omics
technologies highlight the necessity for predictive methods that can
infer comprehensive multi-omics information from single-modal
data. Previous methods, such as JAMIE**, MultiVI® and scButterfly®,
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Fig.1| Architecture of SWITCH framework. SWITCH constructs spatial
proximity graphs for each modality and utilizes modality-specific GAT encoders
to generate low-dimensional embeddings of cell states. Probabilistic decoders
reconstruct these embeddings into their respective feature spaces. The
alignment procedure comprises two iterative phases: (1) adversarial alignment
guided by aknowledge-based feature graph and (2) refinement through the

minimization of differences between original embeddings and pseudo-pairings
generated by cross-modal translation. A cycle-mapping mechanism validates
cross-modal translations by re-encoding and reverting them to their original
modality, ensuring reliable cross-modal translation without paired data. Figure
created with BioRender.com.

utilize additional cross-modal pairing or cell-type information to
embed different modalities into a unified space, enabling transfor-
mation across modalities in a supervised manner. However, pairing
or cell-type information is often inaccessible, and it remains unclear
if these transformations can effectively generalize from paired data
to single-modality data”.

To address these challenges, we propose SWITCH (Spatially
Weighted Multi-omics Integration and Cross-modal Translation with
Cycle-mapping Harmonization), a deep generative model designed to
integrate unpaired spatial multi-omics dataand perform cross-modal
prediction asa unified task. SWITCH employs graph attention networks
(GATs) to learn low-dimensional embeddings for each modality, fol-
lowed by atwo-stage alignment strategy. To effectively handle the low
signal-to-noiseratio in spatial omics data, the modeliteratively gener-
ates pseudo-pairs tointroduce additional supervision signals, enabling
high-quality integration and precise delineation of spatial domains. A
cycle-mapping mechanismisincorporated to ensure consistency and
reliability of the cross-modal translations throughout the optimiza-
tion process. Using multiple datasets, we demonstrate that SWITCH
outperformsexisting methodsinintegrating spatial omics data. Com-
prehensive evaluations validate the efficacy of SWITCH’s unsupervised
cross-modal translations, facilitating diverse downstream analysis.

Results

The SWITCH framework

SWITCH takes feature matrices and spatial coordinates from different
modalities as input (Fig. 1). For each modality, it constructs a spatial

proximity graph based on the coordinates and employs a GAT encoder
to learn low-dimensional embeddings. Thereafter, modality-specific
probabilistic decoders map these embeddings back to the feature
space. The alignment process proceeds intwo stages. Initially, the align-
mentisattained by adversarial learning guided by a knowledge-based
feature graph” (‘guidance graph’), which models regulatory relation-
shipsamong omics layers to ensure biologically meaningful alignment.
Subsequently, the model generates pseudo-pairings by cross-decoding
the aligned embeddings. By minimizing the discrepancy between the
pseudo-pairings and original embeddings, the model gains additional
supervisory signals to refine the alignment. These pseudo-pairings
are then updated on the basis of the refined alignment and used in
subsequent iterations. Through this iterative refinement, SWITCH
enables precise integration of spatial omics and reliable cross-modal
translation without requiring paired data. To ensure the accuracy of
pseudo-pairings duringtraining, SWITCH incorporates acycle-mapping
mechanism that re-encodes the pseudo-pairings and projects them
back into the original modality to enforce consistency. See Methods
for details.

Benchmarking SWITCH for spatial multi-omics integration

We first evaluated the integration performance of SWITCH using the
E13 mouse embryo spatial ATAC-RNA-seq dataset", which profiles
gene expression and chromatin accessibility from the same tissue sec-
tion. We artificially unpaired the dataand compared SWITCH with nine
state-of-the-art methods: Seurat V3, GLUE, Monae, SCALEX, MaxFuse,
scConfluence, SIMBA, bindSC and LIGER. The original study provided
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anatomical annotations on the basis of hematoxylin and eosin staining,
which served as the ground truth (Fig. 2a).

Effective integration of spatial multi-omics datarequires aligning
spots across modalities while accurately identifying spatial domains
that are either shared or modality specific. SWITCH exhibits superior
performanceinboth aspects, achieving unified alignment across omics
layers and precisely delineating consistent domains in both modalities.
Itwas the only approachthatidentified the dorsal root ganglion and spi-
nal structuresinboth modalities (Fig. 2b and Supplementary Fig.1).In
contrast, competing methods revealed limitations: Seuratand SCALEX
could only integrate a limited number of spots, while GLUE and
Monae struggle to detect key structures in the ATAC modality. Other
methods merely aligned and delineated the forebrain and midbrain
structures, and their outputs were accompanied by substantial noise
(Supplementary Fig. 1). For quantitative evaluation, integration per-
formance was assessed from two perspectives: omics mixing and bio-
logical variation conservation, with each aspect measured using three
distinct metrics. Across all replicates, SWITCH outperformed the other
methods in both aspects, achieving an overall score 59% higher than
that of the second-best method (Fig. 2c,d and Supplementary Fig. 5a,b;
see Supplementary Section 1 for metric details). Moreover, SWITCH
attained the best performance on the unsupervised Moran’s/score and
intraclass correlation coefficient (ICC), which respectively measure
the spatial autocorrelation of clusters and the homogeneity within
clusters (Supplementary Fig. 5a).

To provide a finer-scale assessment of integration performance,
we evaluated spot-level alignment accuracy usingthe FOSCTTM (frac-
tion of samples closer than true match)”*® and FOSKNN (fraction of
samples whose true matches are among their k-nearest neighbors).
Ideally, true paired spots across modalities should be in close proximity
withinthe co-embedding space, as they represent the same underlying
biological state. Thus, lower FOSCTTM and higher FOSKNN values indi-
cate more accurate alignment. Inall replicates, SWITCH outperformed
the other methods on both metrics, showing a 46% improvement in
FOSCTTM and a 137% improvement in FOSKNN compared with the
second-best method (Fig. 2e).

We next benchmarked SWITCH on a P22 mouse brain dataset
fromspatial CUT&TAG-RNA-seq, profiling RNA and H3K27ac (histone
H3 lysine 27 acetylation) within the same section". In the absence of
annotations, we used the Allen Brain Atlas® reference to annotate
major anatomical regions such as the cortex (ctx), genu of the corpus
callosum (ccg) and lateral ventricle (vI; Fig. 2f). Compared with the first
embryo dataset, this dataset featured higher spatial resolution but
lower signal-to-noise ratio". Under these conditions, SWITCH demon-
strated more pronounced advantages by accurately delineating major
anatomical regionsinboth modalities (Fig. 2g). Notably, SWITCH pre-
cisely captured the layered structure of the cortex, including cortical
layers1(15-ctx), 2/3 (8-ctx), 4 (13-ctx), 5 (5-ctx) and 6 (10-ctx) (Fig. 2g).
This level of partitioning accuracy surpasses that of all competing
methods, including the original study". Additionally, the structures of
theselayers are well reflected in the uniform manifold approximation
and projection (UMAP) embedding, indicating adequate preservation
of biological variation (Supplementary Fig. 2b). All other methods
introduced substantial noise and identified only a few structures, such
asthe ccg (Fig.2g and Supplementary Fig. 2a). These results are further
evident in Moran’s / and ICC scores (Fig. 2h,i). Regarding spot-level
alignment accuracy, SWITCH achieved the best performance again,
with an 81% improvement in FOSCTTM and a 249% improvement in
FOSKNN compared with the second-best method (Fig. 2j).

We further extended the analysis to a similar P22 mouse brain
dataset with co-profiled RNA and H3K4me3 (trimethylation of lysine
4 on histone H3), and a P21 brain dataset from spatial RNA-ATAC-seq.
In both datasets, SWITCH achieved superior performance in terms
of visualization and quantitative metrics (Supplementary Figs. 3, 4
and 6a,b). We also compared SWITCH with the paired integration

methods, including SpatialGlue®® and COSMOS*, and observed that
SWITCH achieved comparable domain identification performance
(Supplementary Fig. 7). Moreover, SWITCH showed robustness to
hyperparameter variation, with default settings yielding near-optimal
performance across all benchmarks (Supplementary Fig. 8).

Cross-modal imputation with uncertainty estimation
Asagenerative model, SWITCH canimpute missing modalities without
requiring paired data. We evaluated its cross-modal imputation perfor-
mance using the artificially unpaired embryo spatial ATAC-RNA-seq
dataset, predicting chromatin accessibility from gene expression and
vice versa. The imputed gene expression showed a Pearson correla-
tion of 0.41 with the observed values, while the imputed chromatin
accessibility had acorrelation of 0.22, with an area under the receiver
operating characteristic curve of 0.28 for binarized chromatin acces-
sibility (Fig. 3a,b and Supplementary Fig. 9a). Inspired by previous
studies?*, we hypothesize that this relatively low correlation may
stem from the low sensitivity and high noise in spatial omics data.
Following procedures fromarecent study®, we smoothed the original
data to mitigate these issues. As anticipated, the imputation results
exhibited high correlations with the smoothed data, with a Pearson
correlation of 0.87 for gene expression and 0.71for chromatin acces-
sibility (Fig. 3c).

In addition, SWITCH provides uncertainty estimates for its
imputed results, enabling users to assess their reliability for down-
stream analyses. Since uncertainty is substantially influenced by
expression and accessibility levels®, we focused on the uncertainty
estimates of binary accessibility. We first calculated the imputation
uncertainty across domain clusters and found that regions such as the
eye and midbrain exhibited higher-than-average uncertainty, whereas
connective tissue and muscle showed lower uncertainty (Fig. 3d and
Supplementary Fig.9b). Thisis understandable, as the eye and midbrain
typically exhibit higher chromatin accessibility levels during develop-
ment. Astrong correlation was observed between the model-estimated
uncertainty and the prediction errors, suggesting that uncertainty
could serve as abenchmark for assessing prediction quality (Fig. 3e).
Notably, we identified a small subset of imputed results (approximately
0.2%) with low uncertainty but high imputation errors (Fig. 3e, data
points in purple box). This indicates that the model was highly con-
fident in these predictions, yet the predicted values were nearly the
opposite of the observations (Fig. 3f, left panel). To investigate these
discrepancies, we examined both the observed and smoothed accessi-
bility values and found that the smoothed values aligned with SWITCH’s
imputed results, indicating that the cases with low uncertainty yet high
errors in SWITCH'’s predictions may correspond to false negatives or
false positivesin the original data (Fig. 3f, right panel).

To evaluate the efficacy ofimputed datain downstream analyses,
we performed differential analyses using SWITCH’s imputations. The
log fold change values of imputed and observed data exhibited strong
correlations, with Spearman correlations of 0.64 for gene expres-
sion and 0.51 for chromatin accessibility (Fig. 3g). When restricted
to high-confidence data points (g-value < 0.01), these correlations
further strengthened, reaching 0.87 for gene expression and 0.59 for
chromatin accessibility (Supplementary Fig. 9¢). As a specific exam-
ple, we examined the differential analysis results for the eye domain.
The five most significantly differentially expressed genes were all
related to eye development (Fig. 3h, left panel). Although these genes
were detectable in the observed expression data, their signals were
marred by substantial noise (for example, for Vax2; Fig. 3i, left panel).
In contrast, SWITCH’s imputed expression precisely recovered these
signals, showing enhanced enrichmentin the eye domain (Fig. 3i, right
panel). Similarly, the five most significantly differentially accessible
peaks were associated with eye development, with two of these peaks
undetectable in the observed data (Fig. 3h, right panel). The peak at
chr17:85607669-85608247, corresponding to the transcription start
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Fig. 2| Benchmarking the integration performance of SWITCH. a, Anatomical
annotation of E13 mouse embryo. DRG, dorsal root ganglion. b, Spatial plots

of the mouse embryo data showing domains identified by different methods.
The annotated labels correspond to SWITCH results, and the clustering colors
and structures of other methods may not necessarily match. ¢, Omics mixing
scores versus biological conservation scores for different methods over five
repetitions. d, Overallintegration scores for different methods, calculated asa
weighted combination of biological conservation (60%) and omics mixing (40%)
inc (n=>5repeats with different random seeds). e, FOSCTTM and FOSKNN scores
for each method (n = Srepeats with different random seeds). f, Major anatomical
structures of the mouse brain coronal section, annotated using the Allen Brain
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h, Box plots of Moran’s /scores for each method (n =16 clusters). In the box plots,
the central line represents the median, the lower and upper hinges indicate the
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Fig. 3| SWITCH achieves reliable cross-modal imputation and uncertainty
estimation. a, SWITCH-imputed RNA versus observed RNA, with all values
log-scaled. b, SWITCH-imputed ATAC versus observed ATAC, with all values
log-scaled. ¢, SWITCH-imputed values versus smoothed RNA and ATAC
observations, with all values log-scaled. d, Box plots of imputation uncertainty
across domain clusters (n =10,659,438). In the box plots, the central line
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range. e, The imputation error versus imputation uncertainty, with all values
log-scaled. The purple box highlights data points with low uncertainty but high
error. f, Comparison of binary imputed and observed accessibility for data points

marked in the purple box ine (n =21,102), and smoothed binary accessibility for
points where observations are 1(top right) and O (bottom right). In the box plots,
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green; undetected ones inred.i, Observed and SWITCH-imputed expression
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TSS, alongside observed expression of Six30s1.
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site (TSS) of Six3os1 (a regulator of the eye development gene Six3),
was almost entirely noise in the observed data but exhibited clear
specificity in the model-imputed accessibility data, aligning well with
Six3os1 expression (Fig. 3j). We further benchmarked SWITCH against
four state-of-the-art cross-modal prediction methods: JAMIE*, Mul-
tiVI%, scButterfly* and Monae”. SWITCH consistently outperformed
all competing methods across four translation tasks on two datasets
(Supplementary Fig.10).

To assess theimpact of cross-modal cell-type imbalance onimpu-
tation performance, we conducted two additional perturbation experi-
ments. In the first, gene expression data from the eye domain were
removed; in the second, chromatin accessibility data were removed.
Despite the absence of eye expression, SWITCH’simputations remained
well correlated with the observed values, with a Pearson correlation of
0.39 withraw and 0.84 withsmoothed data. Further analysis revealed
that imputation performance remained stable for spots outside the
eye region, but the imputed values within the eye region were sys-
tematically lower than those from the complete dataset, indicating
that the model adopts a more conservative strategy when predicting
without direct evidence (Supplementary Fig.11a). Asimilar trend was
observed in the second experiment, where the imputed accessibility
data showed Pearson correlations of 0.21 and 0.69 with the raw and
smoothed data, respectively (Supplementary Fig.11b). Extending the
analysis to other domain-removal scenarios revealed consistent trends
(Supplementary Fig. 12). Moreover, SWITCH maintained robust inte-
gration performance under these unbalanced conditions, with only a
slight decrease in overall accuracy (Supplementary Fig. 13).

Downstream analyses enabled by cross-modal imputation
Previous experiments were conducted on artificially unpaired datasets,
whichmayintroduce certain biases. To address this, we applied SWITCH
to two co-sequenced microfluidic indexing-based spatial ATAC and
RNA sequencing” mouse embryo datasets, using gene expression data
fromonesectionand chromatinaccessibility data from the other. The
original study provided morphology-based annotations, whichserved
as ground truth (Fig. 4a).

Visually, SWITCH recovered spatial domains closely matching
the ground-truth annotations (Fig. 4b). UMAP plots demonstrated
effective mixing of omics layers, with clear delineation of domain
clusters (Fig. 4c). As individual spot labels were unavailable, we used
ICC and Moran’s /to quantitatively assess the performance of domain
identification. SWITCH outperformed other methods on both metrics,
indicating better cluster homogeneity and less noise in the identified
domains (Fig. 4d and Supplementary Fig. 14a). To validate the imputa-
tion accuracy, we conducted differential expression analysis on the
imputed expression data. The Gene Ontology analysis of the top 30
differentially expressed genes for each domain cluster aligned well with
their biological functions (Supplementary Fig.15a). Similarly, we per-
formed differential accessibility analysis using the imputed accessibil-
ity data, followed by motif enrichment analysis of the domain-specific
peaks (Supplementary Fig. 15b). The enriched motifs and associated
transcription factors (TFs) exhibited cell-type specificity and were
consistent with known regulatory programs.

Next, we concentrated on the cortical development process
in mouse embryos, using Monocle3* to infer the developmental

trajectories of the cortical regions (domains 4 and 6; Fig. 4¢, left panel).
By mapping the pseudotime of spots onto their spatial location, we
observed consistent spatiotemporal changes from the ventricular
zone to the cortical plate in both modalities, aligning with current
research findings (Fig. 4e). To verify whether the imputed expression
captured changes along the pseudotime, we identified a series of
genes that varied over pseudotime using the gene expression in RNA
modality, and observed that these genes displayed similar trends in
the ATAC-imputed expression (Pearson correlation 0.98) (Fig. 4f).
Forinstance, the marker Paxé for radial glial progenitor cells is highly
expressed in early cortical development and declines as develop-
ment progresses. The marker Fomes for intermediate progenitor cells
has elevated expression throughout the mid-developmental stage.
The post-mitotic neuron marker Tbrl displays increasing expression
during development, reaching its zenith in the later stages (Fig. 4g).
This expression pattern is consistent with the cell lineage transition
from radial glial cells to intermediate progenitor cells and then to
post-mitotic neurons over cortical development'>*,

By imputing missing expression and accessibility data, SWITCH
enables systematic identification of peak-gene links. Visualization
of highly correlated connections (Pearson correlation >0.45) dem-
onstrated their consistency and domain specificity (Fig. 4h). Further
integrating these links with peak-motif connections enables the
construction of gene regulatory networks (GRNSs). As an illustrative
example, we extracted the Neurodi-centered regulatory subnetwork
in the DPallm region (Fig. 4i). Within this network, we identified sev-
eral well-established regulatory relationships, such as the regula-
tion of Bhlhe22 by NeurodI*°, and the regulation of Cux2 and Satb2 by
Neurod2* ¢, Notably, our network reveals a cascading regulatory path-
way in which NeurodI regulates Neurod2 via Bhlhe22. This mechanism
is indirectly supported by previous studies®* showing that Bhlhe22 is
rapidlyinduced within one day of Neurod1 activation, whereas Neurod2
expressionincreases three days later.

Despite SWITCH’s success inintegrating truly unpaired data, it may
still face challenges when integrating modalities with lower similarity.
To quantitatively assess alignment quality under such conditions, we
developed a metric termed the integration consistency score, which
evaluates alignment accuracy on the basis of biological prior knowl-
edge. This metric was first validated on four paired datasets, where
scores substantially declined when spots were randomly mismatched
to simulate misalignment (Supplementary Fig. 16a). On the mouse
embryo datasets at different developmental stages, the scores declined
asthe developmental stages of the two modalities became increasingly
distant (Supplementary Fig.16c-e).

Integration of ST and single-nucleus ATAC-seq data
Asanemergingtechnology, spatial omics still trails behind single-cell
datain resolution, cell throughput and cost-effectiveness. A practi-
cal alternative is to combine these two approaches to leverage their
complementary strengths. Previous studies have primarily focused
on integrating spatial and single-cell transcriptomics data, whereas
SWITCH enables integration across different omics layers. Moreover,
by supporting cross-modal translation, SWITCH extends unimodal
spatial data into multi-omics, allowing for more comprehensive
downstream analyses.

Fig. 4| Cross-modal imputation in unpaired mouse embryo data enables
diverse downstream analyses. a, Anatomic annotation of major structural
regions in the mouse embryo. DPallm, mantle zone of the dorsal pallium; DPallv,
ventricular zone of the dorsal pallium. b, Spatial plots of the mouse embryo data
showing domains identified by SWITCH. ¢, UMAP representation computed
from the latent space generated by SWITCH, with spots colored by modality and
domain.d, Moran’s /score (n=12 clusters) and ICC for each method. In the box
plots, the central line represents the median, the lower and upper hinges indicate
thefirst and third quartiles, respectively, and the whiskers denote 1.5 times the

interquartile range. Data points beyond the whiskers are plotted individually.
e, UMAP plot showing the trajectory of cortical development (left) and the
trajectory mapped onto the spatial plots (middle and right). f, Heatmaps of
gene expression changes over pseudotime, showing observed and imputed.
g, Dynamic changes of genes Pax6, Eomes and Tbr1 over pseudotime.

h, Heatmaps depicting chromatin accessibility (left) and their linked genes
(right), with rows clustered on the basis of accessibility. i, Subgraph of the GRN
for Dpallm, showing the first- and second-order targets of Neurod1. TG, target
gene. Panel a adapted with permission from ref. 12, Springer Nature Limited.
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In this section, we applied SWITCH to integrate ST data from
an adult mouse coronal brain, obtained using Stereo-seq*, with
single-nucleus ATAC-seq data from similar tissue® (Fig. 5). The UMAP
plotrevealed effective mixing of the two modalities while maintaining
clear separation of different cell types (Supplementary Fig. 18a). The

original ATAC data provided the sampling regions for cells, allowing
us to estimate the alignment accuracy by contrasting the sampled
regions with their respective cell-type compositions. For instance,
cells sampled from region B were primarily annotated as L2/3 and L5
cortical excitatory neurons (EX L2/3 and EX L5); cells from region G

a Anatomic annotation b SWITCH c Modality Domain
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® 2—Hindbrain
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Fig.5|SWITCH integrates ST and single-cell ATAC data to infer spatial d, Observed expression (top left) and activity scores (inferred from SWITCH-
chromatin accessibility. a, Annotation of the mouse brain coronal section from imputed accessibility) of selected TFs (top right), and the corresponding ISH
the Allen Brain Atlas. b, Visualization of spatial domains identified by integrating images of the mouse brain coronal section from the Allen Brain Atlas (bottom).
ST and single-cell ATAC data using SWITCH. ¢, Observed gene expression in Panelaadapted fromref. 29 under a Creative Commons license CC BY 4.0.

ST (left) and SWITCH-imputed accessibility at the corresponding TSS (right).

were mainly annotated as excitatory neurons from the midbrainand  data, we applied k-nearest neighbor smoothing before transfer, which
thalamic regions (EX Mb and EX thalamic; Supplementary Fig.18b). improved the correlationto 0.65 (Supplementary Fig.19).
Further validation with the Allen Brain Atlas® confirmed that SWITCH We next examined the spatial patterns of imputed chromatin
accurately captured major anatomical structures, such as cortical ~ accessibility and compared them with the expression of proximal
layers L1-L6, fiber tracts and hippocampal regions CA1, CA3and DG  genes. Insome cases, genes were enriched in specific regions, but the
(Fig. 5a,b). imputed accessibility did not show localization (the case for Ddc). In
We next evaluated SWITCH’s imputation performance, focusing  other cases, even when genes did not exhibit enrichment in specific
ontranslating gene expressionin the ST datainto chromatinaccessibil-  regions, theimputed accessibility showed distinct spatial patterns (the
ity (Fig. 5c). Given the absence of ground truth, we cross-validatedthe  case for Akap6).Only afew genes, such as Lamp5and Cldn11, displayed
imputed results using an external paired single-cell multi-omics dataset  consistent spatial patterns across the two modalities. These observa-
frommouse brain®, in which RNA and ATAC were jointly profiled.Using  tions reflect the inherent complexity and nonlinearity of gene-peak
the RNA modality as a shared anchor, we transferred single-cell ATAC  regulatory relationships.
signals to the Stereo-seq data via Seurat™. Comparison of the trans- We further inferred TF motif activity scores from the imputed
ferred and imputed values showed a moderate Pearson correlation  accessibility profiles and observed strong correlations with gene expres-
of 0.45. Considering the inherent technical noise in single-cell ATAC  sion levels for certain TFs such as Mef2c, Sox10 and Egr3, as validated
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by insitu hybridization (ISH) data from the Allen Brain Atlas® (Fig. 5d).
Notably, the TF Fos, despite showing substantial noise in the expression
data, had activity scores that closely matched the Allen ISH results.

Finally, we reconstructed GRNs by integrating observed gene
expressionwith SWITCH-inferred chromatinaccessibility. The resulting
GRNs captured several known regulatory relationships. For instance,
Ascl2isknown to regulate Car2*, Mobp is regulated by Sox10*° and Tcf4
regulates Grik3, Csmd2 and PdelOa™".

Discussion

Although SWITCH was primarily designed for unpaired spatial
multi-omics data, it is capable of incorporating paired datasets. Such
pairing information can aid modality alignment and refinement of
pseudo-pair generation, furtherimprovingintegration accuracy. Never-
theless, external paired datasets should be incorporated with caution,
astheresulting batcheffects or cell-type discrepancies may undermine
the accuracy of predictions. Moreover, the conceptual framework of
SWITCH may also be extended to other related tasks, such as perturba-
tion effect prediction or the translation between histological images
and gene expression.

SWITCH operates under the assumption that different modalities
share acommon semantic space. This assumption may be challenged
in cases where the inter-modality correspondence is weak, such as
between epigenomic and proteomic data. A promising strategy to
address this issue is the introduction of an intermediate modality to
bridge weakly linked data types—for example, transcriptomics could
serve as a mediator to improve integration between epigenomic and
proteomic profiles. Optimizing SWITCH for these challenging sce-
nariosis a potential direction for future research and would enhanceits
applicability across diverse biological contexts. Inaddition, as spatial
omics technologies continue to advance and generate increasingly
high-throughput data, further optimization of SWITCH for large-scale
datasets will be important for its practical utility.

Methods

The framework of SWITCH

Construction of the spatial neighbor graph. Assuming that spa-
tially adjacent spots have similar cell states, we transform the spatial
information into an undirected neighbor graph G = (V, E), where V
represents the set of all spots and E represents the set of edges con-
necting these spots.

The adjacency matrix A encodes the neighbor relationships
between spots: if the Euclidean distance between two spots i and;j is
less thanapredefined thresholdr, thenA;;=1; otherwise, A;;= 0.rcan
beflexibly adjusted on the basis of data characteristics or experimental
requirements, ensuring that each spot has an appropriate number
of neighbors to accurately reflect spatial structure features. To pre-
serve the graph’s completeness and capture features of local regions,
we introduce self-loops by setting A;;= 1for i in the adjacency matrix.

GAT-based modality-specific encoder. Let X; € RM*fiand X, € RV:xF
depict the two modalities to be integrated, where N, and N, represent
the number of spots in the tissue, and F, and F, denote the number of
features for eachmodality, respectively. Forinstance, in the integration
of ST and epigenomics, X; corresponds to agene-by-spot matrix, while
X, corresponds to aregion-by-spot matrix.

Each modality m €1, 2is equipped with anindependent encoder
/2, which encodes the input features x,, ; of spotiinto the parameters
of a d-dimensional multivariate normal (MVN) distribution z,,; € R,
specifically themean p,,; € R‘and variance o2 , € R%. Thisdesignallows
eachmodality to captureits unique characterlstlcs Torepresentboth
expression patterns and the neighborhood microenvironment, we
employ GATs as the primary encoder. To mitigate the oversmoothing
effect commonin graph-based methods, the final layer of the encoder
isimplemented as a linear layer. Specifically, the embedding of spot i

producedbythelth(/e€],2,...,
mis computed as

L -1)layer of the encoder for modality

h, = Leaky ReLU( > ) x (W,ﬁ,”hf,’,‘}))) 0

JENI

where i denotes the set of neighboring spots for spot i, W is the
weight matrix for the [/th layer of the encoder for modality m, Leaky
RelLUistheactivation functionand af,’q),ij represents the attention coef-
ficientbetween spotiandits neighborjin the lth layer of the encoder
for modality m, computed as follows:

exp
oy = ( 2’) .
ZkeN ( m,ik )
T
€0 _ Leaky Relu (aﬁ (WORED W;ﬂh,,;’;;)}) 3)

where a? is a trainable weight vector and || represents vector
concatenation.

Inthe Lthencoder layer, the features processed through the L -1
GAT layers are mapped to the distribution parameters of z,,; via two
linear layers as follows:

= hG W, +b, @
loga? , = K0 "W, +b,, 5)

wherew, andW, denotetrainableweightmatricesand b, and b, are
bias vectors.

Directly sampling z,,; from the MVN distribution complicates
backpropagation due to the non-differentiability of the sampling
process. To address this, we apply the reparameterization trick, where
z,;isexpressed as adeterministic function of the learned parameters
Hp;and 0%, combined witharandom noise term e drawn fromastand-
ard normal distribution (0, /). Thisis formulated as

‘mi = Hm,i + Om,i O €, €~N(0,1) (6)

where © denotes Hadamard multiplication. In summary, the encoder
S maps the input features x,,,; to a probability latent representation
described by the following distribution:

q (zm,i |xm,i; ‘pm) = MVN (Zm,i§/~lm,i’ afn,il) @)
where ¢, encompasses all trainable parameters of the encoder for
modality m, including weights and biases across all layers.

Adversarial alignment via prior guidance graph. To align the spot
embeddings z,,generated by the modality-specific encoders, we intro-
duce a discriminator D with an m-dimensional softmax output:

Y = softmax (D (zp,;; 9)) ®

where ¢ denotes the learnable parameters of the discriminator, y € R™
and y, represents the probability of spot ibeing predicted as belonging
to the mth modality. The discriminator’s objective is to classify the
modality of spot i on the basis of its embedding z,, ;. This adversarial
mechanism encourages the latent representations produced by the
encoders to converge, ensuring consistency across modalities.
However, inherent differences between modalities may lead to
semantically inconsistent latent variables, potentially causing
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misalignment. To address this, weleverage aguidancegraph g = (v, ¢),
inspired by GLUE, to impose constraints on the alignment process on
the basis of prior biological regulatory relationships. In this graph, v
denotes the set of nodes, each corresponding to a modality-specific
feature suchas agene (from RNA-seq) or an open chromatin peak (from
ATAC-seq). The set of edges € encodes known or hypothesized regula-
tory relationships, typically linking features across different omics
layers, with each edge from node i to nodej further annotated by a
weightw;and asigns;. Here, w; € (0, 1] represents the strength of the
interaction, and s; € {-1, 1} indicates the direction of regulation, with
s;=1 denoting positive regulation and s;=-1 denoting
negative regulation.

Inallanalyses presented in this study, we constructed regulatory
edgesinthe guidance graphsolely onthe basis of the genomic proxim-
ity between peaks and genes. Specifically, a directed edge was estab-
lished betweenapeakand ageneifthe peak overlapped with either the
gene body or the proximal promoter region, defined asthe 2-kb region
upstream of the TSS. For each such edge, we assigned w;=1.0ands; =1,
indicating a presumed positive regulatory relationship between the
peakandthe gene. Reverse edges and self-loops were also included for
allnodesto facilitate message passing and maintain numerical stability.

Similar to GLUE, we treat the guidance graph as an observed vari-
able and employ a dedicated graph convolutional network (GCN)
encoder to represent each nodejin graph g as a d-dimensional MVN
random variable v ; € RY. The encoding process is defined as

q(v19:¥g) = MUN (v 1, 0%1) ©)
1 =fGCNyj(9) (10)
lOgUf = foen,, (9) (€8]

where g represents the set of parameters of the encoder for the guid-
ance graph 6. Next, the guidance graph decoder g, maps the node
embeddings Vback to the original graph:

9 ~ ] Bernoulli(p(e;)) (12)
ijev
p(ey) =8 Wiv j; 9g) 13)

where g4 represents the set of parameters of the decoder for the guid-
ancegraph g, p(e;) denotes the probability of an edge existing between
nodesiandj, and Gisthereconstructed graph.

Modality-specific decoder. The decoder g for modality mis designed
to generate the full-dimensional features corresponding to modality
mfromthe spotembeddings z, which can originate from any modality,
and the feature embeddings V,,. Instead of directly reconstructing the
original feature matrix, we map the latent space to the parameters of
a specific distribution to account for noise in the original data. For
example, we employ a negative binomial (NB) distribution for the
RNA-seq and ATAC-seq data. The generation process for the
full-dimensional features of modality m from aspotibelonging to any
modality is expressed as

-)?m,i ~ H NB (pm,js em,j) (14)
JEVm
Pm,j = softmax; (ay © V32 + Bm) X |; @as)

where a,,, B, and 8,,; are learnable parameters of the decoder for
modality m. p,,;and 8,,; represent the mean and dispersion of the NB

distribution, respectively. a,, is a scaling factor, 3, is a bias factor and
softmax; represents performing softmax on the jth dimension of the
data. [;is the total count for spot i, which represents a scaling factor
that adjusts the feature for spot i. In the case where spot i does not
belong to modality m, [;is a scalar value greater than O that scales the
valuesinameaningful way to maintain consistency with the modality’s
feature distribution.

Insummary, through the decoder g, we map the latent represen-
tation z;to a probabilistic distribution over the features of modality m:

)?m,i = glzn (Zi’ Vm;(pm) (16)

where @, represents the set of parameters of the decoder for
modality m.

Model training of SWITCH

Reconstruction loss. The reconstruction loss measures the differ-
ence between the original data and the reconstructed data gener-
ated by the model. It quantifies the model’s ability to regenerate
input features from the latent representations. Minimizing this
loss ensures that the learned latent representations preserve the
characteristics of the original features. For omics data, the loss is
defined as the negative log-likelihood of the observed counts given
the predicted parameters:

g = 3 e a7)
me{1,2}
L)r:ncon = _[Eq(z,,, 1% 38m) [Ing(xmlzm’ Unm; (pm)] (18)

where log p(x,, | z,., U.; ®,,) is the data likelihood, conditioned on the
latent variables z,, and the feature embeddings v,,, with ¢,, being the
parameters of the decoder for modality m.

For the guiding graph data, the reconstruction loss is defined as

L5 = ~Eqwiguy) [l0gP (91V:05)] )

where logp (§|V: @g) is the graph likelihood, conditioned on the node
embeddings V.

Adversarial loss. The adversarial loss is employed to train the dis-
criminator to accurately classify the modality of the point embeddings.
Specifically, the discriminator learns to differentiate between the dif-
ferent modalities present in the data. Onthe other hand, the encoder is
trained to produce modality-invariant representations by minimizing
the ability of the discriminator to distinguish between these modalities.
This adversarial framework encourages the encoder to extract features
that are independent of any particular modality, thereby promoting
generalization across different input types. Formally, the adversarial
lossis defined as

1
Ladv — z Z{: }Lf,?vﬁ,a,?v =- q(zmxm;wm)[
me{l,2

2 I logﬁm] .o

me{1,2}

Cycle-mapping loss. In SWITCH, each modality m is associated with
amodality-specificdecoder g, which takes modality-specific features
V,, and spot embeddings z (originating from any modality) as inputs
and generates the modality-specific features for that spot. When the
input embeddings z originate from modality m, this process is referred
to as reconstruction. Conversely, when the embeddings arise from a
different modality n, itis termed cross-modal translation. While recon-
struction loss ensures that the embeddings can map back to their
original modality, it does not guarantee accurate mappingto another
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modality. Previous methods address this by relying on external paired
data, whichlimits their generalizability. To overcome this, we introduce
acycle-mapping mechanism that enables spot embeddings zto trans-
late between modalities using dedicated decoders, ensuring
cross-modal consistency without requiring paired data.

For the translation from modality m to n, the cycle-mapping pro-
cessisdefined as follows:

Zin = f (Xmyi) (21)
Kmoni = 85" (Zmyi» V) (22)
Zmoni =f7 (Rmoni) (23)
Eonomi = &5 Zmonyis Vi) (24)

wherez,,;denotes the latent representation of spot iin modality mand
Xmon; iS the cross-modal translation of z,,; to modality n. Z,_,;
re-encodes latent representationin modality n, and X, .., ,represents
the cycle-mapped reconstruction in modality m. The cycle-mapping
loss quantifies the difference between the reconstructed features
Xm-nem;andtheoriginalinputx,, ;. For translation from modality mto
n,thelossis defined as

cycle _
Lmsn =

~Eqtepnbin-nitn) 1089 CmlZmons Vins @m)] - 25
A similar formulation applies for the reverse translation n > m.

Thus, the overall cycle-mapping loss is given by

covde = ~BGnonbinonitn) [Ing(XmLfm%n’ Vins q0'")] (26)

“Eorom [Xmsm3¥m) [lng(X,, 1Znom> Vas (on)] .

The effectiveness of the cycle-mapping loss can be understood
from two perspectives:

- Interpretability within the target modality. It ensures that
cross-modal imputation results are interpretable within the
target modality by requiring the imputed data to be re-encoded
into latent representations by the target modality’s encoder. For
example, in the translation m - n, the imputed features x,,_.,,; are
meaningful if their re-encoding 2,,.,; = f!(X,-,) aligns with the
latent structure of modality n.

« Faithfulness to the biological state. It ensures that imputed
features reflect the true biological state of the spots. This is
achieved by requiring that cycle-mapped reconstructions
Xm-nm;Closely resemble the original features x,, ;. This consist-
ency demonstrates that the cross-modal translation retains
biological information and structural integrity.

In summary, the cycle-mapping loss plays a pivotal role in main-
taining the biological and structural integrity of cross-modal imputa-
tions. By ensuring that imputed results are interpretable within the
target modality and faithful to the original biological state, it allows
SWITCH to achieve accurate and meaningful cross-modal integration
without relying on paired data.

Embedding-alignment loss. The embedding-alignment loss ensures
consistency between the latent representations generated during
cross-modal translation and the original embeddings. As described
earlier, SWITCH facilitates cross-modal translation, enabling spot
representations to be transformed across different modalities. This
process generates pseudo-paired data for the spots, which assists the
encoder inaligning representations across modalities.

Specifically, for aspotiinmodality m, its latent variable z,,;should
align with the latent variable Z,,_,,,; obtained from the cross-modal

translationresult X,,.,, . Since these latent variables represent the same
underlying cell state, they should be close to each other in the latent
space. We employ the cosine similarity to quantify this alignment:

Zm,i : Zm—rn,i

dist (Zp i Zmoni) = ————F——. (27)
G Zmnd = 2 M 2 |
The embedding-alignment loss is then defined as
ralign — a—dist(zp,iZm-n) 4 @=dist(ZniZnom,i) 28)

Kullback-Leibler-regularization loss. To ensure that the latent vari-
ables z are well structured and aligned with a prior distribution p(z),
we further employ the Kullback-Leibler (KL) divergence as aregulariza-
tionterm. The prior distribution p(z) is typically chosen tobe astandard
normal distribution (0, /). This regularization promotes smoothness
and continuity within the latent space, enabling the model to learn
meaningful latent representations and exhibit robust
generative capabilities.

LK = KL (G X3 Ym) | P (2)
+KL (g (zn|Xn; ) || P (2)
+KL(q Gl ¥n) || P (2))
+KL (g G ml X m; ¥m) 1| P (2)) -

(29)

Overall optimization objective. The total loss function used for
training SWITCH is a weighted sum of individual loss components,
including reconstruction losses, adversarial loss, cycle-mappingloss,
embedding-alignmentloss and KL-regularization loss. This composite
objective ensures that the model optimally balances data reconstruc-
tion, modality alignment and latent-space regularization. The total
loss function is defined as

recon
L = ATECOHL
total data "~ data

+/1cycle Lcycle +/Ialign Lalign + AKL gKL

+Arec0n[/'eC°“ + Jadv padv
¢ (30)

where A7econ, grecon, 1, Avcke, enand 1 are hyperparameters that control
the relative contributions of each loss term total objective.

Implementation details. For all datasets, the model is trained using a
learning rate of 0.0002. The maximum number of training epochs is
automatically determined on the basis of the dataset size and learning
rate, ensuring efficient convergence. A default set of hyperparameters,
optimized for general use across awide range of scenarios, is provided
inSupplementary Table 1.

Benchmarking integration methods

We compared SWITCH with nine other methods, including Seurat
V3" (v.3.2.3), LIGER" (v.0.2.0), bindSC* (v.1.0.0), GLUE" (v.0.2.0),
SCALEX*® (v.1.0.2), MaxFuse® (v.09302022V), SIMBA" (v.1.2), scCo-
nfluence? (v.0.1.0) and Monae*. For methods that require a gene
activity matrix as input, such as Seurat V3, LIGER and bindSC, gene
activity scores were computed from the peak matrix using the
ArchR R package** (v.1.0.2). All competing methods were applied
with their respective recommended default hyperparameter set-
tings and preprocessing steps, and the same number of highly vari-
able genes and peaks was selected to ensure a fair comparison under
consistent conditions. The benchmarking code is publicly available
at https://github.com/zzli123/SWITCH/.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

Source dataare available with this paper. All datasets used in this study
are publicly available. Detailed information about the datasets, as well
astheaccessible code and links, can be foundin Supplementary Table 2.
The processed datasets are freely available at https://doi.org/10.5281/
zeno0do.15602076 (ref. 43).

Code availability

The source code of SWITCH, along with Jupyter notebooks for repro-
ducing the results in this study, is available at https://github.com/
zz1i123/SWITCH/ and https://doi.org/10.5281/zenod0.16522594
(ref.44).
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