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Integrative deep learning of spatial 
multi-omics with SWITCH
 

Zhongzhan Li    1, Sanqing Qu2, Haixin Liang1, Ruohui Tang1, Xudong Zhang2, 
Fan Lu2, Jiani Yang1, Ziling Gan1, Shaorong Gao    1  , Yanping Zhang    1   & 
Guang Chen    2 

Advancements in spatial omics permit spatially resolved measurements 
across several biological modalities. The high cost of acquiring co-profiled 
multimodal data limits the analysis. This underscores the necessity for 
computational methods to integrate unpaired spatial multi-omics data and 
perform cross-modal predictions on single-modality data. The integration 
of spatial omics is challenging due to typically low signal-to-noise ratios. 
Here we introduce SWITCH (Spatially Weighted Multi-omics Integration 
and Cross-modal Translation with Cycle-mapping Harmonization), a deep 
generative model for spatial multi-omics integration. SWITCH presents 
a cycle-mapping mechanism that produces dependable cross-modal 
translations without requiring additional paired data. These cross-modal 
translations function as pseudo-pairs to provide supplementary signals. 
Systematic evaluations demonstrate that SWITCH outperforms existing 
methods in terms of integration accuracy and achieves more precise spatial 
domain delineation, resolving brain cortical structures at higher resolution. 
The reliability of cross-modal translations was validated, facilitating various 
downstream analyses such as differential analysis, trajectory inference and 
gene regulatory network inference.

The progress of single-cell multi-omics technology has transformed 
our capacity to investigate gene regulation processes across several 
omics layers. However, tissue dissociation processes result in the loss 
of spatial context, which is crucial for comprehending cellular pro-
cesses. Spatial transcriptomics (ST)1–4 was developed to overcome this 
constraint and has evolved to encompass spatial multi-omics, includ-
ing spatial epigenomics5–7 and proteomics8,9. Despite advancements 
enabling spatially resolved measurements of multiple omics within 
a single tissue section10–12, the higher costs relative to single-omics 
methods, along with limitations in resolution and cellular through-
put, lead to the current spatial omics data generally being restricted 
to single modality. Consequently, there is an urgent necessity for 
computational methods to efficiently integrate unpaired spatial 
multi-omics datasets13.

Numerous methods have been proposed for the integration of 
unpaired single-cell multi-omics data, including Seurat V314, LIGER15, 
bindSC16, GLUE17, SCALEX18, SIMBA19, MaxFuse20, scConfluence21 and 
Monae22. However, none of these methods use spatial information, 
which is crucial for accurate detection of spatial domains. Furthermore, 
as these methods are primarily designed for single-cell omics, they fail 
to fully account for the inherently low signal-to-noise ratio characteris-
tic of spatial omics, which is particularly evident in modalities beyond 
transcriptomics20,23. This much noise may result in erroneous or failed 
integration and limit the precise delineation of spatial domains.

In addition, the limitations of co-profiling spatial multi-omics 
technologies highlight the necessity for predictive methods that can 
infer comprehensive multi-omics information from single-modal 
data. Previous methods, such as JAMIE24, MultiVI25 and scButterfly26, 
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proximity graph based on the coordinates and employs a GAT encoder 
to learn low-dimensional embeddings. Thereafter, modality-specific 
probabilistic decoders map these embeddings back to the feature 
space. The alignment process proceeds in two stages. Initially, the align-
ment is attained by adversarial learning guided by a knowledge-based 
feature graph17 (‘guidance graph’), which models regulatory relation-
ships among omics layers to ensure biologically meaningful alignment. 
Subsequently, the model generates pseudo-pairings by cross-decoding 
the aligned embeddings. By minimizing the discrepancy between the 
pseudo-pairings and original embeddings, the model gains additional 
supervisory signals to refine the alignment. These pseudo-pairings 
are then updated on the basis of the refined alignment and used in 
subsequent iterations. Through this iterative refinement, SWITCH 
enables precise integration of spatial omics and reliable cross-modal 
translation without requiring paired data. To ensure the accuracy of 
pseudo-pairings during training, SWITCH incorporates a cycle-mapping 
mechanism that re-encodes the pseudo-pairings and projects them 
back into the original modality to enforce consistency. See Methods 
for details.

Benchmarking SWITCH for spatial multi-omics integration
We first evaluated the integration performance of SWITCH using the 
E13 mouse embryo spatial ATAC–RNA-seq dataset11, which profiles 
gene expression and chromatin accessibility from the same tissue sec-
tion. We artificially unpaired the data and compared SWITCH with nine 
state-of-the-art methods: Seurat V3, GLUE, Monae, SCALEX, MaxFuse, 
scConfluence, SIMBA, bindSC and LIGER. The original study provided 

utilize additional cross-modal pairing or cell-type information to 
embed different modalities into a unified space, enabling transfor-
mation across modalities in a supervised manner. However, pairing 
or cell-type information is often inaccessible, and it remains unclear 
if these transformations can effectively generalize from paired data 
to single-modality data27.

To address these challenges, we propose SWITCH (Spatially 
Weighted Multi-omics Integration and Cross-modal Translation with 
Cycle-mapping Harmonization), a deep generative model designed to 
integrate unpaired spatial multi-omics data and perform cross-modal 
prediction as a unified task. SWITCH employs graph attention networks 
(GATs) to learn low-dimensional embeddings for each modality, fol-
lowed by a two-stage alignment strategy. To effectively handle the low 
signal-to-noise ratio in spatial omics data, the model iteratively gener-
ates pseudo-pairs to introduce additional supervision signals, enabling 
high-quality integration and precise delineation of spatial domains. A 
cycle-mapping mechanism is incorporated to ensure consistency and 
reliability of the cross-modal translations throughout the optimiza-
tion process. Using multiple datasets, we demonstrate that SWITCH 
outperforms existing methods in integrating spatial omics data. Com-
prehensive evaluations validate the efficacy of SWITCH’s unsupervised 
cross-modal translations, facilitating diverse downstream analysis.

Results
The SWITCH framework
SWITCH takes feature matrices and spatial coordinates from different 
modalities as input (Fig. 1). For each modality, it constructs a spatial 
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Fig. 1 | Architecture of SWITCH framework. SWITCH constructs spatial 
proximity graphs for each modality and utilizes modality-specific GAT encoders 
to generate low-dimensional embeddings of cell states. Probabilistic decoders 
reconstruct these embeddings into their respective feature spaces. The 
alignment procedure comprises two iterative phases: (1) adversarial alignment 
guided by a knowledge-based feature graph and (2) refinement through the 

minimization of differences between original embeddings and pseudo-pairings 
generated by cross-modal translation. A cycle-mapping mechanism validates 
cross-modal translations by re-encoding and reverting them to their original 
modality, ensuring reliable cross-modal translation without paired data. Figure 
created with BioRender.com.
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anatomical annotations on the basis of hematoxylin and eosin staining, 
which served as the ground truth (Fig. 2a).

Effective integration of spatial multi-omics data requires aligning 
spots across modalities while accurately identifying spatial domains 
that are either shared or modality specific. SWITCH exhibits superior 
performance in both aspects, achieving unified alignment across omics 
layers and precisely delineating consistent domains in both modalities. 
It was the only approach that identified the dorsal root ganglion and spi-
nal structures in both modalities (Fig. 2b and Supplementary Fig. 1). In 
contrast, competing methods revealed limitations: Seurat and SCALEX 
could only integrate a limited number of spots, while GLUE and 
Monae struggle to detect key structures in the ATAC modality. Other 
methods merely aligned and delineated the forebrain and midbrain 
structures, and their outputs were accompanied by substantial noise 
(Supplementary Fig. 1). For quantitative evaluation, integration per-
formance was assessed from two perspectives: omics mixing and bio-
logical variation conservation, with each aspect measured using three 
distinct metrics. Across all replicates, SWITCH outperformed the other 
methods in both aspects, achieving an overall score 59% higher than 
that of the second-best method (Fig. 2c,d and Supplementary Fig. 5a,b; 
see Supplementary Section 1 for metric details). Moreover, SWITCH 
attained the best performance on the unsupervised Moran’s I score and 
intraclass correlation coefficient (ICC), which respectively measure 
the spatial autocorrelation of clusters and the homogeneity within 
clusters (Supplementary Fig. 5a).

To provide a finer-scale assessment of integration performance, 
we evaluated spot-level alignment accuracy using the FOSCTTM (frac-
tion of samples closer than true match)17,28 and FOSKNN (fraction of 
samples whose true matches are among their k-nearest neighbors)20. 
Ideally, true paired spots across modalities should be in close proximity 
within the co-embedding space, as they represent the same underlying 
biological state. Thus, lower FOSCTTM and higher FOSKNN values indi-
cate more accurate alignment. In all replicates, SWITCH outperformed 
the other methods on both metrics, showing a 46% improvement in 
FOSCTTM and a 137% improvement in FOSKNN compared with the 
second-best method (Fig. 2e).

We next benchmarked SWITCH on a P22 mouse brain dataset 
from spatial CUT&TAG–RNA-seq, profiling RNA and H3K27ac (histone 
H3 lysine 27 acetylation) within the same section11. In the absence of 
annotations, we used the Allen Brain Atlas29 reference to annotate 
major anatomical regions such as the cortex (ctx), genu of the corpus 
callosum (ccg) and lateral ventricle (vl; Fig. 2f). Compared with the first 
embryo dataset, this dataset featured higher spatial resolution but 
lower signal-to-noise ratio11. Under these conditions, SWITCH demon-
strated more pronounced advantages by accurately delineating major 
anatomical regions in both modalities (Fig. 2g). Notably, SWITCH pre-
cisely captured the layered structure of the cortex, including cortical 
layers 1 (15-ctx), 2/3 (8-ctx), 4 (13-ctx), 5 (5-ctx) and 6 (10-ctx) (Fig. 2g). 
This level of partitioning accuracy surpasses that of all competing 
methods, including the original study11. Additionally, the structures of 
these layers are well reflected in the uniform manifold approximation 
and projection (UMAP) embedding, indicating adequate preservation 
of biological variation (Supplementary Fig. 2b). All other methods 
introduced substantial noise and identified only a few structures, such 
as the ccg (Fig. 2g and Supplementary Fig. 2a). These results are further 
evident in Moran’s I and ICC scores (Fig. 2h,i). Regarding spot-level 
alignment accuracy, SWITCH achieved the best performance again, 
with an 81% improvement in FOSCTTM and a 249% improvement in 
FOSKNN compared with the second-best method (Fig. 2j).

We further extended the analysis to a similar P22 mouse brain 
dataset with co-profiled RNA and H3K4me3 (trimethylation of lysine 
4 on histone H3), and a P21 brain dataset from spatial RNA–ATAC-seq. 
In both datasets, SWITCH achieved superior performance in terms 
of visualization and quantitative metrics (Supplementary Figs. 3, 4 
and 6a,b). We also compared SWITCH with the paired integration 

methods, including SpatialGlue30 and COSMOS31, and observed that 
SWITCH achieved comparable domain identification performance 
(Supplementary Fig. 7). Moreover, SWITCH showed robustness to 
hyperparameter variation, with default settings yielding near-optimal 
performance across all benchmarks (Supplementary Fig. 8).

Cross-modal imputation with uncertainty estimation
As a generative model, SWITCH can impute missing modalities without 
requiring paired data. We evaluated its cross-modal imputation perfor-
mance using the artificially unpaired embryo spatial ATAC–RNA-seq 
dataset, predicting chromatin accessibility from gene expression and 
vice versa. The imputed gene expression showed a Pearson correla-
tion of 0.41 with the observed values, while the imputed chromatin 
accessibility had a correlation of 0.22, with an area under the receiver 
operating characteristic curve of 0.28 for binarized chromatin acces-
sibility (Fig. 3a,b and Supplementary Fig. 9a). Inspired by previous 
studies23,25, we hypothesize that this relatively low correlation may 
stem from the low sensitivity and high noise in spatial omics data. 
Following procedures from a recent study25, we smoothed the original 
data to mitigate these issues. As anticipated, the imputation results 
exhibited high correlations with the smoothed data, with a Pearson 
correlation of 0.87 for gene expression and 0.71 for chromatin acces-
sibility (Fig. 3c).

In addition, SWITCH provides uncertainty estimates for its 
imputed results, enabling users to assess their reliability for down-
stream analyses. Since uncertainty is substantially influenced by 
expression and accessibility levels25, we focused on the uncertainty 
estimates of binary accessibility. We first calculated the imputation 
uncertainty across domain clusters and found that regions such as the 
eye and midbrain exhibited higher-than-average uncertainty, whereas 
connective tissue and muscle showed lower uncertainty (Fig. 3d and 
Supplementary Fig. 9b). This is understandable, as the eye and midbrain 
typically exhibit higher chromatin accessibility levels during develop-
ment. A strong correlation was observed between the model-estimated 
uncertainty and the prediction errors, suggesting that uncertainty 
could serve as a benchmark for assessing prediction quality (Fig. 3e). 
Notably, we identified a small subset of imputed results (approximately 
0.2%) with low uncertainty but high imputation errors (Fig. 3e, data 
points in purple box). This indicates that the model was highly con-
fident in these predictions, yet the predicted values were nearly the 
opposite of the observations (Fig. 3f, left panel). To investigate these 
discrepancies, we examined both the observed and smoothed accessi-
bility values and found that the smoothed values aligned with SWITCH’s 
imputed results, indicating that the cases with low uncertainty yet high 
errors in SWITCH’s predictions may correspond to false negatives or 
false positives in the original data (Fig. 3f, right panel).

To evaluate the efficacy of imputed data in downstream analyses, 
we performed differential analyses using SWITCH’s imputations. The 
log fold change values of imputed and observed data exhibited strong 
correlations, with Spearman correlations of 0.64 for gene expres-
sion and 0.51 for chromatin accessibility (Fig. 3g). When restricted 
to high-confidence data points (q-value < 0.01), these correlations 
further strengthened, reaching 0.87 for gene expression and 0.59 for 
chromatin accessibility (Supplementary Fig. 9c). As a specific exam-
ple, we examined the differential analysis results for the eye domain. 
The five most significantly differentially expressed genes were all 
related to eye development (Fig. 3h, left panel). Although these genes 
were detectable in the observed expression data, their signals were 
marred by substantial noise (for example, for Vax2; Fig. 3i, left panel). 
In contrast, SWITCH’s imputed expression precisely recovered these 
signals, showing enhanced enrichment in the eye domain (Fig. 3i, right 
panel). Similarly, the five most significantly differentially accessible 
peaks were associated with eye development, with two of these peaks 
undetectable in the observed data (Fig. 3h, right panel). The peak at 
chr17:85607669-85608247, corresponding to the transcription start 
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Fig. 2 | Benchmarking the integration performance of SWITCH. a, Anatomical 
annotation of E13 mouse embryo. DRG, dorsal root ganglion. b, Spatial plots 
of the mouse embryo data showing domains identified by different methods. 
The annotated labels correspond to SWITCH results, and the clustering colors 
and structures of other methods may not necessarily match. c, Omics mixing 
scores versus biological conservation scores for different methods over five 
repetitions. d, Overall integration scores for different methods, calculated as a 
weighted combination of biological conservation (60%) and omics mixing (40%) 
in c (n = 5 repeats with different random seeds). e, FOSCTTM and FOSKNN scores 
for each method (n = 5 repeats with different random seeds). f, Major anatomical 
structures of the mouse brain coronal section, annotated using the Allen Brain 

Atlas29. g, Spatial plots of the mouse brain data showing domains identified by 
different methods. The annotated labels correspond to SWITCH results, and the 
clustering colors and structures of other methods may not necessarily match.  
h, Box plots of Moran’s I scores for each method (n = 16 clusters). In the box plots, 
the central line represents the median, the lower and upper hinges indicate the 
first and third quartiles, respectively, and the whiskers extend to 1.5 times the 
interquartile range. Data points beyond the whiskers are plotted individually. 
i, ICC for each method. j, FOSCTTM and FOSKNN scores for each method (n = 5 
repeats with different random seeds). The error bars or shaded areas indicate 
mean ± s.d. Panels adapted from: a, ref. 11 under a Creative Commons license  
CC BY 4.0; f, ref. 29 under a Creative Commons license CC BY 4.0.
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Fig. 3 | SWITCH achieves reliable cross-modal imputation and uncertainty 
estimation. a, SWITCH-imputed RNA versus observed RNA, with all values  
log-scaled. b, SWITCH-imputed ATAC versus observed ATAC, with all values  
log-scaled. c, SWITCH-imputed values versus smoothed RNA and ATAC 
observations, with all values log-scaled. d, Box plots of imputation uncertainty 
across domain clusters (n = 10,659,438). In the box plots, the central line 
represents the median, the lower and upper hinges indicate the first and third 
quartiles, respectively, and the whiskers extend to 1.5 times the interquartile 
range. e, The imputation error versus imputation uncertainty, with all values 
log-scaled. The purple box highlights data points with low uncertainty but high 
error. f, Comparison of binary imputed and observed accessibility for data points 

marked in the purple box in e (n = 21,102), and smoothed binary accessibility for 
points where observations are 1 (top right) and 0 (bottom right). In the box plots, 
the central line represents the median, the lower and upper hinges indicate the 
first and third quartiles, respectively, and the whiskers extend to 1.5 times the 
interquartile range. g, Comparison of log fold change (logFC) between imputed 
and observed values for expression (left) and accessibility (right). h, Differential 
analysis results for the eye domain based on imputed expression (left) and 
imputed accessibility (right). Features detected in observed data are shown in 
green; undetected ones in red. i, Observed and SWITCH-imputed expression 
values for Vax2. j, Observed and SWITCH-imputed accessibility values for Six3os1 
TSS, alongside observed expression of Six3os1.
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site (TSS) of Six3os1 (a regulator of the eye development gene Six3), 
was almost entirely noise in the observed data but exhibited clear 
specificity in the model-imputed accessibility data, aligning well with 
Six3os1 expression (Fig. 3j). We further benchmarked SWITCH against 
four state-of-the-art cross-modal prediction methods: JAMIE24, Mul-
tiVI25, scButterfly26 and Monae22. SWITCH consistently outperformed 
all competing methods across four translation tasks on two datasets 
(Supplementary Fig. 10).

To assess the impact of cross-modal cell-type imbalance on impu-
tation performance, we conducted two additional perturbation experi-
ments. In the first, gene expression data from the eye domain were 
removed; in the second, chromatin accessibility data were removed. 
Despite the absence of eye expression, SWITCH’s imputations remained 
well correlated with the observed values, with a Pearson correlation of 
0.39 with raw and 0.84 with smoothed data. Further analysis revealed 
that imputation performance remained stable for spots outside the 
eye region, but the imputed values within the eye region were sys-
tematically lower than those from the complete dataset, indicating 
that the model adopts a more conservative strategy when predicting 
without direct evidence (Supplementary Fig. 11a). A similar trend was 
observed in the second experiment, where the imputed accessibility 
data showed Pearson correlations of 0.21 and 0.69 with the raw and 
smoothed data, respectively (Supplementary Fig. 11b). Extending the 
analysis to other domain-removal scenarios revealed consistent trends 
(Supplementary Fig. 12). Moreover, SWITCH maintained robust inte-
gration performance under these unbalanced conditions, with only a 
slight decrease in overall accuracy (Supplementary Fig. 13).

Downstream analyses enabled by cross-modal imputation
Previous experiments were conducted on artificially unpaired datasets, 
which may introduce certain biases. To address this, we applied SWITCH 
to two co-sequenced microfluidic indexing-based spatial ATAC and 
RNA sequencing12 mouse embryo datasets, using gene expression data 
from one section and chromatin accessibility data from the other. The 
original study provided morphology-based annotations, which served 
as ground truth (Fig. 4a).

Visually, SWITCH recovered spatial domains closely matching 
the ground-truth annotations (Fig. 4b). UMAP plots demonstrated 
effective mixing of omics layers, with clear delineation of domain 
clusters (Fig. 4c). As individual spot labels were unavailable, we used 
ICC and Moran’s I to quantitatively assess the performance of domain 
identification. SWITCH outperformed other methods on both metrics, 
indicating better cluster homogeneity and less noise in the identified 
domains (Fig. 4d and Supplementary Fig. 14a). To validate the imputa-
tion accuracy, we conducted differential expression analysis on the 
imputed expression data. The Gene Ontology analysis of the top 30 
differentially expressed genes for each domain cluster aligned well with 
their biological functions (Supplementary Fig. 15a). Similarly, we per-
formed differential accessibility analysis using the imputed accessibil-
ity data, followed by motif enrichment analysis of the domain-specific 
peaks (Supplementary Fig. 15b). The enriched motifs and associated 
transcription factors (TFs) exhibited cell-type specificity and were 
consistent with known regulatory programs.

Next, we concentrated on the cortical development process 
in mouse embryos, using Monocle332 to infer the developmental 

trajectories of the cortical regions (domains 4 and 6; Fig. 4e, left panel). 
By mapping the pseudotime of spots onto their spatial location, we 
observed consistent spatiotemporal changes from the ventricular 
zone to the cortical plate in both modalities, aligning with current 
research findings (Fig. 4e). To verify whether the imputed expression 
captured changes along the pseudotime, we identified a series of 
genes that varied over pseudotime using the gene expression in RNA 
modality, and observed that these genes displayed similar trends in 
the ATAC-imputed expression (Pearson correlation 0.98) (Fig. 4f). 
For instance, the marker Pax6 for radial glial progenitor cells is highly 
expressed in early cortical development and declines as develop-
ment progresses. The marker Eomes for intermediate progenitor cells 
has elevated expression throughout the mid-developmental stage. 
The post-mitotic neuron marker Tbr1 displays increasing expression 
during development, reaching its zenith in the later stages (Fig. 4g). 
This expression pattern is consistent with the cell lineage transition 
from radial glial cells to intermediate progenitor cells and then to 
post-mitotic neurons over cortical development12,33.

By imputing missing expression and accessibility data, SWITCH 
enables systematic identification of peak–gene links. Visualization 
of highly correlated connections (Pearson correlation >0.45) dem-
onstrated their consistency and domain specificity (Fig. 4h). Further 
integrating these links with peak–motif connections enables the 
construction of gene regulatory networks (GRNs). As an illustrative 
example, we extracted the Neurod1-centered regulatory subnetwork 
in the DPallm region (Fig. 4i). Within this network, we identified sev-
eral well-established regulatory relationships, such as the regula-
tion of Bhlhe22 by Neurod130, and the regulation of Cux2 and Satb2 by 
Neurod234–36. Notably, our network reveals a cascading regulatory path-
way in which Neurod1 regulates Neurod2 via Bhlhe22. This mechanism 
is indirectly supported by previous studies30 showing that Bhlhe22 is 
rapidly induced within one day of Neurod1 activation, whereas Neurod2 
expression increases three days later.

Despite SWITCH’s success in integrating truly unpaired data, it may 
still face challenges when integrating modalities with lower similarity. 
To quantitatively assess alignment quality under such conditions, we 
developed a metric termed the integration consistency score, which 
evaluates alignment accuracy on the basis of biological prior knowl-
edge. This metric was first validated on four paired datasets, where 
scores substantially declined when spots were randomly mismatched 
to simulate misalignment (Supplementary Fig. 16a). On the mouse 
embryo datasets at different developmental stages, the scores declined 
as the developmental stages of the two modalities became increasingly 
distant (Supplementary Fig. 16c–e).

Integration of ST and single-nucleus ATAC-seq data
As an emerging technology, spatial omics still trails behind single-cell 
data in resolution, cell throughput and cost-effectiveness. A practi-
cal alternative is to combine these two approaches to leverage their 
complementary strengths. Previous studies have primarily focused 
on integrating spatial and single-cell transcriptomics data, whereas 
SWITCH enables integration across different omics layers. Moreover, 
by supporting cross-modal translation, SWITCH extends unimodal 
spatial data into multi-omics, allowing for more comprehensive 
downstream analyses.

Fig. 4 | Cross-modal imputation in unpaired mouse embryo data enables 
diverse downstream analyses. a, Anatomic annotation of major structural 
regions in the mouse embryo. DPallm, mantle zone of the dorsal pallium; DPallv, 
ventricular zone of the dorsal pallium. b, Spatial plots of the mouse embryo data 
showing domains identified by SWITCH. c, UMAP representation computed 
from the latent space generated by SWITCH, with spots colored by modality and 
domain. d, Moran’s I score (n = 12 clusters) and ICC for each method. In the box 
plots, the central line represents the median, the lower and upper hinges indicate 
the first and third quartiles, respectively, and the whiskers denote 1.5 times the 

interquartile range. Data points beyond the whiskers are plotted individually. 
e, UMAP plot showing the trajectory of cortical development (left) and the 
trajectory mapped onto the spatial plots (middle and right). f, Heatmaps of 
 gene expression changes over pseudotime, showing observed and imputed.  
g, Dynamic changes of genes Pax6, Eomes and Tbr1 over pseudotime.  
h, Heatmaps depicting chromatin accessibility (left) and their linked genes 
(right), with rows clustered on the basis of accessibility. i, Subgraph of the GRN 
for Dpallm, showing the first- and second-order targets of Neurod1. TG, target 
gene. Panel a adapted with permission from ref. 12, Springer Nature Limited.

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 5 | November 2025 | 1051–1063 1057

Article https://doi.org/10.1038/s43588-025-00891-w

In this section, we applied SWITCH to integrate ST data from 
an adult mouse coronal brain, obtained using Stereo-seq4, with 
single-nucleus ATAC-seq data from similar tissue37 (Fig. 5). The UMAP 
plot revealed effective mixing of the two modalities while maintaining 
clear separation of different cell types (Supplementary Fig. 18a). The 

original ATAC data provided the sampling regions for cells, allowing 
us to estimate the alignment accuracy by contrasting the sampled 
regions with their respective cell-type compositions. For instance, 
cells sampled from region B were primarily annotated as L2/3 and L5 
cortical excitatory neurons (EX L2/3 and EX L5); cells from region G 
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were mainly annotated as excitatory neurons from the midbrain and 
thalamic regions (EX Mb and EX thalamic; Supplementary Fig. 18b). 
Further validation with the Allen Brain Atlas29 confirmed that SWITCH 
accurately captured major anatomical structures, such as cortical 
layers L1–L6, fiber tracts and hippocampal regions CA1, CA3 and DG 
(Fig. 5a,b).

We next evaluated SWITCH’s imputation performance, focusing 
on translating gene expression in the ST data into chromatin accessibil-
ity (Fig. 5c). Given the absence of ground truth, we cross-validated the 
imputed results using an external paired single-cell multi-omics dataset 
from mouse brain38, in which RNA and ATAC were jointly profiled. Using 
the RNA modality as a shared anchor, we transferred single-cell ATAC 
signals to the Stereo-seq data via Seurat14. Comparison of the trans-
ferred and imputed values showed a moderate Pearson correlation 
of 0.45. Considering the inherent technical noise in single-cell ATAC 

data, we applied k-nearest neighbor smoothing before transfer, which 
improved the correlation to 0.65 (Supplementary Fig. 19).

We next examined the spatial patterns of imputed chromatin 
accessibility and compared them with the expression of proximal 
genes. In some cases, genes were enriched in specific regions, but the 
imputed accessibility did not show localization (the case for Ddc). In 
other cases, even when genes did not exhibit enrichment in specific 
regions, the imputed accessibility showed distinct spatial patterns (the 
case for Akap6). Only a few genes, such as Lamp5 and Cldn11, displayed 
consistent spatial patterns across the two modalities. These observa-
tions reflect the inherent complexity and nonlinearity of gene–peak 
regulatory relationships.

We further inferred TF motif activity scores from the imputed 
accessibility profiles and observed strong correlations with gene expres-
sion levels for certain TFs such as Mef2c, Sox10 and Egr3, as validated 
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Fig. 5 | SWITCH integrates ST and single-cell ATAC data to infer spatial 
chromatin accessibility. a, Annotation of the mouse brain coronal section from 
the Allen Brain Atlas. b, Visualization of spatial domains identified by integrating 
ST and single-cell ATAC data using SWITCH. c, Observed gene expression in 
ST (left) and SWITCH-imputed accessibility at the corresponding TSS (right). 

d, Observed expression (top left) and activity scores (inferred from SWITCH-
imputed accessibility) of selected TFs (top right), and the corresponding ISH 
images of the mouse brain coronal section from the Allen Brain Atlas (bottom). 
Panel a adapted from ref. 29 under a Creative Commons license CC BY 4.0.
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by in situ hybridization (ISH) data from the Allen Brain Atlas29 (Fig. 5d). 
Notably, the TF Fos, despite showing substantial noise in the expression 
data, had activity scores that closely matched the Allen ISH results.

Finally, we reconstructed GRNs by integrating observed gene 
expression with SWITCH-inferred chromatin accessibility. The resulting 
GRNs captured several known regulatory relationships. For instance, 
Ascl2 is known to regulate Car239, Mobp is regulated by Sox1040 and Tcf4 
regulates Grik3, Csmd2 and Pde10a41.

Discussion
Although SWITCH was primarily designed for unpaired spatial 
multi-omics data, it is capable of incorporating paired datasets. Such 
pairing information can aid modality alignment and refinement of 
pseudo-pair generation, further improving integration accuracy. Never-
theless, external paired datasets should be incorporated with caution, 
as the resulting batch effects or cell-type discrepancies may undermine 
the accuracy of predictions. Moreover, the conceptual framework of 
SWITCH may also be extended to other related tasks, such as perturba-
tion effect prediction or the translation between histological images 
and gene expression.

SWITCH operates under the assumption that different modalities 
share a common semantic space. This assumption may be challenged 
in cases where the inter-modality correspondence is weak, such as 
between epigenomic and proteomic data. A promising strategy to 
address this issue is the introduction of an intermediate modality to 
bridge weakly linked data types—for example, transcriptomics could 
serve as a mediator to improve integration between epigenomic and 
proteomic profiles. Optimizing SWITCH for these challenging sce-
narios is a potential direction for future research and would enhance its 
applicability across diverse biological contexts. In addition, as spatial 
omics technologies continue to advance and generate increasingly 
high-throughput data, further optimization of SWITCH for large-scale 
datasets will be important for its practical utility.

Methods
The framework of SWITCH
Construction of the spatial neighbor graph. Assuming that spa-
tially adjacent spots have similar cell states, we transform the spatial 
information into an undirected neighbor graph G = (V, E), where V 
represents the set of all spots and E represents the set of edges con-
necting these spots.

The adjacency matrix A encodes the neighbor relationships 
between spots: if the Euclidean distance between two spots i and j is 
less than a predefined threshold r, then Ai,j = 1; otherwise, Ai,j = 0. r can 
be flexibly adjusted on the basis of data characteristics or experimental 
requirements, ensuring that each spot has an appropriate number 
of neighbors to accurately reflect spatial structure features. To pre-
serve the graph’s completeness and capture features of local regions,  
we introduce self-loops by setting Ai,i = 1 for i in the adjacency matrix.

GAT-based modality-specific encoder. Let X1 ∈ ℝN1×F1 and X2 ∈ ℝN2×F2 
depict the two modalities to be integrated, where N1 and N2 represent 
the number of spots in the tissue, and F1 and F2 denote the number of 
features for each modality, respectively. For instance, in the integration 
of ST and epigenomics, X1 corresponds to a gene-by-spot matrix, while 
X2 corresponds to a region-by-spot matrix.

Each modality m ∈ 1, 2 is equipped with an independent encoder 
fmz , which encodes the input features xm,i of spot i into the parameters 

of a d-dimensional multivariate normal (MVN) distribution zm,i ∈ ℝd, 
specifically the mean μm,i ∈ ℝd and variance σ2m,i ∈ ℝd. This design allows 
each modality to capture its unique characteristics. To represent both 
expression patterns and the neighborhood microenvironment, we 
employ GATs as the primary encoder. To mitigate the oversmoothing 
effect common in graph-based methods, the final layer of the encoder 
is implemented as a linear layer. Specifically, the embedding of spot i 

produced by the lth (l ∈ 1, 2, …, L − 1) layer of the encoder for modality 
m is computed as

h(l)m,i = Leaky ReLU( ∑
j∈𝒩𝒩i

α(l)m,ij × (W (l)
m h(l−1)m, j )) (1)

where 𝒩𝒩i  denotes the set of neighboring spots for spot i, W(l)
m  is the 

weight matrix for the lth layer of the encoder for modality m, Leaky 
ReLU is the activation function and α(l)m,ij represents the attention coef-
ficient between spot i and its neighbor j in the lth layer of the encoder 
for modality m, computed as follows:

α(l)m,ij =
exp (e(l)m,ij)

∑k∈𝒩𝒩i
exp (e(l)m,ik)

(2)

e(l)m,ij = Leaky ReLU (a(l)m
⊤
[W (l)

m h(l−1)m,i ∥ W (l)
m h(l−1)m, j ]) (3)

where a(l)m  is a trainable weight vector and ∥ represents vector  
concatenation.

In the Lth encoder layer, the features processed through the L − 1 
GAT layers are mapped to the distribution parameters of zm,i via two 
linear layers as follows:

μm,i = h(L−1)m,i Wμm + bμm (4)

logσ2m,i = h
(L−1)
m,i Wσm + bσm (5)

where Wμm and Wσm denote trainable weight matrices and bμm and bσm are 
bias vectors.

Directly sampling zm,i from the MVN distribution complicates 
backpropagation due to the non-differentiability of the sampling 
process. To address this, we apply the reparameterization trick, where 
zm,i is expressed as a deterministic function of the learned parameters 
μm,i and σ2m,i, combined with a random noise term ϵ drawn from a stand-
ard normal distribution 𝒩𝒩(0, I). This is formulated as

zm,i = μm,i + σm,i ⊙ ϵ, ϵ ∼ 𝒩𝒩 (0, I ) (6)

where ⊙ denotes Hadamard multiplication. In summary, the encoder 
fmz  maps the input features xm,i to a probability latent representation 

described by the following distribution:

q (zm,i|xm,i;ψm) = MVN (zm,i;μm,i,σ2m,iI) (7)

where ψm encompasses all trainable parameters of the encoder for 
modality m, including weights and biases across all layers.

Adversarial alignment via prior guidance graph. To align the spot 
embeddings zm generated by the modality-specific encoders, we intro-
duce a discriminator D with an m-dimensional softmax output:

̂y = softmax (D (zm,i;ϕ)) (8)

where ϕ denotes the learnable parameters of the discriminator, ̂y ∈ ℝm 
and ̂ym represents the probability of spot i being predicted as belonging 
to the mth modality. The discriminator’s objective is to classify the 
modality of spot i on the basis of its embedding zm,i. This adversarial 
mechanism encourages the latent representations produced by the 
encoders to converge, ensuring consistency across modalities.

However, inherent differences between modalities may lead to 
semantically inconsistent latent variables, potentially causing 
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misalignment. To address this, we leverage a guidance graph 𝒢𝒢 = (𝒢𝒢, 𝒢), 
inspired by GLUE, to impose constraints on the alignment process on 
the basis of prior biological regulatory relationships. In this graph, 𝒢𝒢  
denotes the set of nodes, each corresponding to a modality-specific 
feature such as a gene (from RNA-seq) or an open chromatin peak (from 
ATAC-seq). The set of edges 𝒢 encodes known or hypothesized regula-
tory relationships, typically linking features across different omics 
layers, with each edge from node i to node j further annotated by a 
weight wij and a sign sij. Here, wij ∈ (0, 1] represents the strength of the 
interaction, and sij ∈ {−1, 1} indicates the direction of regulation, with 
s ij = 1 denoting positive regulation and sij = −1 denoting 
negative regulation.

In all analyses presented in this study, we constructed regulatory 
edges in the guidance graph solely on the basis of the genomic proxim-
ity between peaks and genes. Specifically, a directed edge was estab-
lished between a peak and a gene if the peak overlapped with either the 
gene body or the proximal promoter region, defined as the 2-kb region 
upstream of the TSS. For each such edge, we assigned wij = 1.0 and sij = 1, 
indicating a presumed positive regulatory relationship between the 
peak and the gene. Reverse edges and self-loops were also included for 
all nodes to facilitate message passing and maintain numerical stability.

Similar to GLUE, we treat the guidance graph as an observed vari-
able and employ a dedicated graph convolutional network (GCN) 
encoder to represent each node j in graph 𝒢𝒢 as a d-dimensional MVN 
random variable v j ∈ ℝd. The encoding process is defined as

q (v j|𝒢𝒢;ψ𝒢𝒢) = MVN (v j;μj,σ2j I) (9)

μj = fGCNμj (𝒢𝒢) (10)

logσ2j = fGCNσ2j
(𝒢𝒢) (11)

where ψ𝒢𝒢 represents the set of parameters of the encoder for the guid-
ance graph 𝒢𝒢. Next, the guidance graph decoder gv maps the node 
embeddings V back to the original graph:

̂𝒢𝒢 ∼ ∏
i, j∈V

Bernoulli (p (eij)) (12)

p (eij) = gv(vi, v j;φ𝒢𝒢) (13)

where φ𝒢𝒢 represents the set of parameters of the decoder for the guid-
ance graph 𝒢𝒢, p(eij) denotes the probability of an edge existing between 
nodes i and j, and ̂𝒢𝒢 is the reconstructed graph.

Modality-specific decoder. The decoder gmz  for modality m is designed 
to generate the full-dimensional features corresponding to modality 
m from the spot embeddings z, which can originate from any modality, 
and the feature embeddings Vm. Instead of directly reconstructing the 
original feature matrix, we map the latent space to the parameters of 
a specific distribution to account for noise in the original data. For 
example, we employ a negative binomial (NB) distribution for the 
RNA-seq and ATAC-seq data. The generation process for the 
full-dimensional features of modality m from a spot i belonging to any 
modality is expressed as

̂xm,i ∼ ∏
j∈Vm

NB (ρm, j,θm, j) (14)

ρm, j = softmaxj (αm ⊙ V⊤mzi + βm) × li (15)

where αm, βm and θm,j are learnable parameters of the decoder for 
modality m. ρm,j and θm,j represent the mean and dispersion of the NB 

distribution, respectively. αm is a scaling factor, βm is a bias factor and 
softmaxj represents performing softmax on the jth dimension of the 
data. li is the total count for spot i, which represents a scaling factor 
that adjusts the feature for spot i. In the case where spot i does not 
belong to modality m, li is a scalar value greater than 0 that scales the 
values in a meaningful way to maintain consistency with the modality’s 
feature distribution.

In summary, through the decoder gmz , we map the latent represen-
tation zi to a probabilistic distribution over the features of modality m:

̂xm,i = gmz (zi,Vm;φm) (16)

where φm represents the set of parameters of the decoder for 
modality m.

Model training of SWITCH
Reconstruction loss. The reconstruction loss measures the differ-
ence between the original data and the reconstructed data gener-
ated by the model. It quantifies the model’s ability to regenerate 
input features from the latent representations. Minimizing this 
loss ensures that the learned latent representations preserve the 
characteristics of the original features. For omics data, the loss is 
defined as the negative log-likelihood of the observed counts given 
the predicted parameters:

ℒrecon
data = 1

2 ∑
m∈{1,2}

ℒrecon
xm (17)

ℒrecon
xm = −𝔼𝔼q(zm |xm ;ψm) [logp (xm| zm, vm;φm)] (18)

where log p(xm | zm, vm; φm) is the data likelihood, conditioned on the 
latent variables zm and the feature embeddings vm, with φm being the 
parameters of the decoder for modality m.

For the guiding graph data, the reconstruction loss is defined as

ℒrecon
𝒢𝒢 = −𝔼𝔼q(V|𝒢𝒢;ψ𝒢𝒢) [logp (𝒢𝒢|V;φ𝒢𝒢)] (19)

where logp (𝒢𝒢|V;φ𝒢𝒢) is the graph likelihood, conditioned on the node 
embeddings V.

Adversarial loss. The adversarial loss is employed to train the dis-
criminator to accurately classify the modality of the point embeddings. 
Specifically, the discriminator learns to differentiate between the dif-
ferent modalities present in the data. On the other hand, the encoder is 
trained to produce modality-invariant representations by minimizing 
the ability of the discriminator to distinguish between these modalities. 
This adversarial framework encourages the encoder to extract features 
that are independent of any particular modality, thereby promoting 
generalization across different input types. Formally, the adversarial 
loss is defined as

ℒadv = 1
2 ∑
m∈{1,2}

ℒadv
m ℒadv

m = −𝔼𝔼q(zm |xm ;ψm) [ ∑
m∈{1,2}

ym log ̂ym] . (20)

Cycle-mapping loss. In SWITCH, each modality m is associated with 
a modality-specific decoder gmz , which takes modality-specific features 
Vm and spot embeddings z (originating from any modality) as inputs 
and generates the modality-specific features for that spot. When the 
input embeddings z originate from modality m, this process is referred 
to as reconstruction. Conversely, when the embeddings arise from a 
different modality n, it is termed cross-modal translation. While recon-
struction loss ensures that the embeddings can map back to their 
original modality, it does not guarantee accurate mapping to another 
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modality. Previous methods address this by relying on external paired 
data, which limits their generalizability. To overcome this, we introduce 
a cycle-mapping mechanism that enables spot embeddings z to trans-
late between modalities using dedicated decoders, ensuring 
cross-modal consistency without requiring paired data.

For the translation from modality m to n, the cycle-mapping pro-
cess is defined as follows:

zm,i = f mz (xm,i) (21)

̂xm→n,i = g nz (zm,i,Vn) (22)

̂zm→n,i = f nz ( ̂xm→n,i) (23)

̂xm→n→m,i = gmz ( ̂zm→n,i,Vm) (24)

where zm,i denotes the latent representation of spot i in modality m and 
̂xm→n,i  is the cross-modal translation of zm,i to modality n. ̂zm→n,i  

re-encodes latent representation in modality n, and ̂xm→n→m,i represents 
the cycle-mapped reconstruction in modality m. The cycle-mapping 
loss quantifies the difference between the reconstructed features 
̂xm→n→m,i and the original input xm,i. For translation from modality m to 

n, the loss is defined as

ℒcycle
m→n = −𝔼𝔼q( ̂zm→n | ̂xm→n ;ψm) [logp (xm| ̂zm→n,Vm;φm)] . (25)

A similar formulation applies for the reverse translation n → m. 
Thus, the overall cycle-mapping loss is given by

ℒcycle = −𝔼𝔼q( ̂zm→n | ̂xm→n ;ψn) [logp (xm| ̂zm→n,Vm;φm)]

−𝔼𝔼q( ̂zn→m | ̂xn→m ;ψm) [logp (xn| ̂zn→m,Vn;φn)] .
(26)

The effectiveness of the cycle-mapping loss can be understood 
from two perspectives:

•	 Interpretability within the target modality. It ensures that 
cross-modal imputation results are interpretable within the 
target modality by requiring the imputed data to be re-encoded 
into latent representations by the target modality’s encoder. For 
example, in the translation m → n, the imputed features ̂xm→n,i are 
meaningful if their re-encoding ̂zm→n,i = fnz ( ̂xm→n,i) aligns with the 
latent structure of modality n.

•	 Faithfulness to the biological state. It ensures that imputed 
features reflect the true biological state of the spots. This is 
achieved by requiring that cycle-mapped reconstructions 
̂xm→n→m,i closely resemble the original features xm,i. This consist-

ency demonstrates that the cross-modal translation retains 
biological information and structural integrity.

In summary, the cycle-mapping loss plays a pivotal role in main-
taining the biological and structural integrity of cross-modal imputa-
tions. By ensuring that imputed results are interpretable within the 
target modality and faithful to the original biological state, it allows 
SWITCH to achieve accurate and meaningful cross-modal integration 
without relying on paired data.

Embedding-alignment loss. The embedding-alignment loss ensures 
consistency between the latent representations generated during 
cross-modal translation and the original embeddings. As described 
earlier, SWITCH facilitates cross-modal translation, enabling spot 
representations to be transformed across different modalities. This 
process generates pseudo-paired data for the spots, which assists the 
encoder in aligning representations across modalities.

Specifically, for a spot i in modality m, its latent variable zm,i should 
align with the latent variable ̂zm→n,i  obtained from the cross-modal 

translation result ̂xm→n,i. Since these latent variables represent the same 
underlying cell state, they should be close to each other in the latent 
space. We employ the cosine similarity to quantify this alignment:

dist (zm,i, ̂zm→n,i) =
zm,i ⋅ ̂zm→n,i

∥ zm,i ∥∥ ̂zm→n,i ∥
. (27)

The embedding-alignment loss is then defined as

ℒalign = e−dist(zm,i , ̂zm→n,i) + e−dist(zn,i , ̂zn→m,i). (28)

Kullback–Leibler-regularization loss. To ensure that the latent vari-
ables z are well structured and aligned with a prior distribution p(z), 
we further employ the Kullback–Leibler (KL) divergence as a regulariza-
tion term. The prior distribution p(z) is typically chosen to be a standard 
normal distribution 𝒩𝒩(0, I). This regularization promotes smoothness 
and continuity within the latent space, enabling the model to learn 
meaning ful latent representations and exhibit robust 
generative capabilities.

ℒKL = KL (q (zm|xm;ψm) ∥ p (z))

+KL (q (zn|xn;ψn) ∥ p (z))

+KL (q ( ̂zm→n| ̂xm→n;ψn) ∥ p (z))

+KL (q ( ̂zn→m| ̂xn→m;ψm) ∥ p (z)) .

(29)

Overall optimization objective. The total loss function used for 
training SWITCH is a weighted sum of individual loss components, 
including reconstruction losses, adversarial loss, cycle-mapping loss, 
embedding-alignment loss and KL-regularization loss. This composite 
objective ensures that the model optimally balances data reconstruc-
tion, modality alignment and latent-space regularization. The total 
loss function is defined as

ℒtotal = λrecondata ℒrecon
data

+ λrecon𝒢𝒢 ℒrecon
𝒢𝒢

+ λadv ℒadv

+λcycle ℒcycle + λalign ℒalign + λKL ℒKL
(30)

where λrecondata , λrecon𝒢𝒢 , λadv, λcycle, λalign and λKL are hyperparameters that control 
the relative contributions of each loss term total objective.

Implementation details. For all datasets, the model is trained using a 
learning rate of 0.0002. The maximum number of training epochs is 
automatically determined on the basis of the dataset size and learning 
rate, ensuring efficient convergence. A default set of hyperparameters, 
optimized for general use across a wide range of scenarios, is provided 
in Supplementary Table 1.

Benchmarking integration methods
We compared SWITCH with nine other methods, including Seurat 
V314 (v.3.2.3), LIGER15 (v.0.2.0), bindSC16 (v.1.0.0), GLUE17 (v.0.2.0), 
SCALEX18 (v.1.0.2), MaxFuse20 (v.09302022V), SIMBA19 (v.1.2), scCo-
nfluence21 (v.0.1.0) and Monae22. For methods that require a gene 
activity matrix as input, such as Seurat V3, LIGER and bindSC, gene 
activity scores were computed from the peak matrix using the 
ArchR R package42 (v.1.0.2). All competing methods were applied 
with their respective recommended default hyperparameter set-
tings and preprocessing steps, and the same number of highly vari-
able genes and peaks was selected to ensure a fair comparison under 
consistent conditions. The benchmarking code is publicly available 
at https://github.com/zzli123/SWITCH/.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

http://www.nature.com/natcomputsci
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Data availability
Source data are available with this paper. All datasets used in this study 
are publicly available. Detailed information about the datasets, as well 
as the accessible code and links, can be found in Supplementary Table 2. 
The processed datasets are freely available at https://doi.org/10.5281/
zenodo.15602076 (ref. 43).

Code availability
The source code of SWITCH, along with Jupyter notebooks for repro-
ducing the results in this study, is available at https://github.com/
zzli123/SWITCH/ and https://doi.org/10.5281/zenodo.16522594 
(ref. 44).
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